Элективный курс по алгебре для 9-го класса на тему "Квадратные уравнения и неравенства с параметром"
Дополнительные задания:
4. При каких значениях а корни уравнения 4х2+(5а-1)х+3а=-а равны по модулю, но противоположны по знаку?
Найдите все значения параметра k, при которых уравнение (k-2)x-2kx+2k-3=0 имеет хотя бы один корень?
Доказать, что при любом значении а уравнение х2+(а-2)х+(а-3)=0 имеет два корня.
При как
их значениях параметра а уравнение имеет единственное решение?
4. Подведение итогов занятия:
- Интересными ли явились задания?
- Не являются ли они сложными или, наоборот, простыми?
Выставление учениками самим себе баллов за каждое верно решенное задание (1 задание – 1 балл).
5. Постановка домашнего задания:
Задания, аналогичные задачам, решаемым на занятии:
№1. а) При каких значениях k оба корня уравнения х2+(16-k)х+k+8=0 равны 0?
б) При каких значениях а корни уравнения х2-2х+m-1=0
равны по модулю, но противоположны по знаку?
№2. При каких а уравнение
а) (а-4)х+(2а-4)х-(а-2)=0 имеет не менее одного решения;
б) (а+1)х+2(а+1)х-2=0 не имеет корней.
Задания на самостоятельный поиск решения:
№3. а) Найти корни квадратного уравнения ах2+bх+с=0, если а–b+с=0.
б) При каких значениях параметра а уравнения равносильны? (Вспомнить, какие уравнения называются равносильными)
Занятие II. Теорема Виета. Знаки корней квадратного трехчлена
Цель: формирование умения определять знаки корней квадратного трехчлена, применяя теорему Виета.
Ход занятия:
Организационный момент. Сообщение темы и целей занятия.
Проверка домашнего задания: решение №1, №2 записано учителем на доске, ученики проверяют; №3: один из учеников, выполнивший задание №3а), записывает до начала занятия решение на доске, второй - №3б); затем задания разбираются. Если задания никем не выполнены, то решение объясняет учитель.
Обзорная лекция по теме «Теорема Виета. Знаки корней квадратного уравнения».
Теорема Виета: Если дискриминант (при А0), то трехчлен Ax+Bх+C имеет корни и , удовлетворяющие соотношениям: (*)
И наоборот, если числа и удовлетворяют соотношениям (*), то они являются корнями квадратного трехчлена Ax+Bх+C.
Исходя из теоремы Виета, получаются условия, определяющие знак корней трехчлена (Таблица 3).
Таблица 3.
Знак корней |
>0 >0 |
0 0 |
<0 <0 |
0 0 |
>0 <0 |
=0 >0 |
=0 <0 |
Условия |
|
|
|
|
|
|
|
Решение задач. Задание 1 решает один из учеников на доске. Затем ученики выполняют задания самостоятельно с последующей проверкой на доске.
Задания:
1. При каком значении параметра а уравнение х2+(3а-5)х-2=0 имеет корни разных знаков?
2. При каком значении параметра а корни трехчлена (а-4)х2+(а+2)х+2 положительны?
3. Найти все а, для которых уравнение (а-1)х2+(2а+3)х+2+а=0 имеет корни одного знака.
4. Найти все а, при которых неравенство справедливо для всех неотрицательных х.
5. Не решая уравнение определить знаки его корней: ах+2(а+1)х+2а=0;
Дополнительные задания:
6. При каких значениях р неравенство 5х-4(р+3)х+4<рсправедливо для всех отрицательных х?
7. Определить знак корней уравнения:
а) 3ах+(4-6а)+3(а-1)=0; б) (а-3)х2-2(3а-4)х+7а-6=0.
8. Решить уравнение, используя теорему Виета: х2-(2а+1)х+а+а2=0.
5. Подведение итогов.
- Какова была тема занятия? Что нового узнали на занятии?
- Достигли ли цели, поставленной в начале занятия?
Учитель ставит баллы (от 1 до 8) ученикам, наиболее активно работавшим на занятии.
6. Постановка домашнего задания.
1. При каком значении параметра а оба корня уравнения
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения