Элективный курс по алгебре для 9-го класса на тему "Квадратные уравнения и неравенства с параметром"

(а-2)х2-2ах+а+3=0 положительны?

2. Определить знак корней уравнения: (а-2)х2-2ах+2а-3=0.

3. Найти все а, при которых неравенство справедливо для всех отрицательных х.

4. Задания по теме следующего занятия «Соотношения на корни квадратного трехчлена»:

А) При каком значении параметра а уравнение х2+(а2+а-2)х+а=0 име

ет корни, сумма которых равна 0?

Б) При каком значении параметра а один из корней уравнения

х2-(3а+2)х+а2=0 в девять раз больше другого?

Занятие III. Соотношения на корни квадратного трехчлена

Цель: отработка навыка применения теоремы Виета при решении задач; формирование умения записывать на математическом языке условие задачи, умения анализировать, обобщать, находить рациональный способ решения задачи.

Ход занятия:

1. Организационный момент.

2. Разбор домашнего задания.

В №1-3 устно проверяется идея решения и называются ответы. Те, кто не справился с решением какой-то задачи, должны обратиться за помощью к тем, у кого решение выполнено верно, и исправить свои ошибки.

Учащимся предлагается показать найденное решение №4. Задача подробно разбирается, анализируется.

3. Решение задач.

3.1. При разборе №4 из домашнего задания делается вывод, как выполнять задания на соотношения между корнями квадратного уравнения, а именно: чтобы найти все значения параметра а, при которых корни уравнения Ax+Bх+C=0 удовлетворяют некоторому соотношению G(,,a)=0 (соответственно, G(,,a)0 или G(,,a)0), достаточно найти все значения а, удовлетворяющие условиям:

(для G(,,a)0 или G(,,a)0 получаем соответствующие неравенства вместо третьего уравнения системы).

3.2. Совместное выполнение задания:

При каких значениях сумма квадратов корней уравнения равна 4?

При выполнении задания необходимо выразить через коэффициенты уравнения сумму квадратов корней уравнения; найти а; проверить существование корней, подставив полученные а в данное уравнение.

3.3. Выполнение заданий в парах.

Каждое предложенное задание сначала обсуждается в парах. Затем происходит всеобщее обсуждение решения. Найденное решение одним из учеников записывается на доске.

1. Найти все значения , при которых корни уравнения удовлетворяют условию .

2. При каких значениях сумма квадратов корней уравнения является наименьшей? Чему равна эта сумма?

В следующих задачах используется такое соотношение между корнями, которое непосредственно не выражается через коэффициенты. В этом случае составляем систему, где два уравнения — формулы Виета, а третье — заданное соотношение. При решении такой системы корни уравнения обычно находятся, поэтому специально проверять их существование не надо.

3. При каких а разность корней уравнения равна 14?

4. При каких значениях параметра k произведение корней уравнения х2+3х+(k2-7k+12)=0 равно 0?

5. При каких а разность корней уравнения 2х2 - (а + 1)х + (а - 1) =0 равна их произведению?

Дополнительные задания:

6. В уравнении х2-2х+а=0 квадрат разности корней равен 16. Найти а.

7. Известно, что корни уравнения х2-5х+4=0 на 1 меньше корней уравнения х2-7х+3а-6=0. Найти а и корни каждого из уравнений.

8. Пусть х1 и х2 – корни уравнения 2х2-7х-3=0. Составить квадратное уравнение, корнями которого являются числа х1-2 и х2-2.

4. Подведение итогов занятия.

- Что нужно сделать, чтобы решить задачу на соотношение на корни квадратного уравнения?

Учащиеся в паре оценивают работу друг друга по пятибалльной шкале. Также учитель ставит по одному баллу наиболее активным учащимся.

5. Постановка домашнего задания

Задания, обязательные для выполнения:

В уравнении х2-4х+а=0 сумма квадратов корней равна 16. Найти а.

При каком значении а сумма квадратов корней уравнения х2+(2-р)х-р-3=0 равна квадрату разности корней этого уравнения?

Определить а таким образом, чтобы корни уравнения 2х2+(2а-1)х+а-1=0 удовлетворяли соотношению 3х-4х=11.

Дополнительные задания:

Пусть х1 и х2 – корни уравнения 2х2-7х-3=0. Составить квадратное уравнение, корнями которого являются числа 2х1+3 и 2х2+3.

Не вычисляя корней уравнения 3х2+8х-1=0 найти х1х23+х2х13.

При каких значениях р и q корни уравнения х2+рх+q=0 равны 2р и ?

Занятие IV. Квадратный трехчлен: теорема Виета; знаки корней квадратного трехчлена; соотношения на корни квадратного уравнения

Цель: закрепление умения использовать теорему Виета для определения знаков корней квадратного трехчлена и решения задач на соотношения между корнями квадратного уравнения; применение имеющихся знаний при решении задач; формирование умения работать в группе.

Ход занятия:

Организационный момент.

Проверка домашнего задания: 3 ученика до начала занятия записывают решение задач №1-3 на доске. На занятии учащиеся проверяют решение, исправляют ошибки. Задачи №4-6 учитель проверяет индивидуально у каждого учащегося.

Решение задач. Класс делится на группы по 4-5 человек. Каждая группа получает по 2 блока заданий (у всех задания одинаковые), которые необходимо решить за определенное время (20 мин).

За каждое верно решенное задание первого блока будет ставиться 2 балла, второго блока – 3 балла.

За 17 минут до окончания занятия группы прекращают свою работу, начинается проверка и обсуждение решений, найденных группами. По результатам проверки подводятся итоги, и выявляется группа-победитель.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы