Формирование временных представлений на уроках математики в начальной школе по программе "Школа России"
Между тем, С.Л.Царева, автор методического пособия для учителей начальных классов отмечает, что при обучении учащихся математике по некоторым системам и учебникам « .интуитивные представления детей о конкретных величинах не только не уточняются, но в определенной мере искажаются: авторы отождествляют объект и величину, характеризующую его, они также не разводят понятия величина, значение величи
ны, числовое значение величины, смешивают физический и математический смысл величины. В результате представления учащихся о величине, полученные из учебников этого направления, могут быть противоречивыми, алогичными и формальными».
С этим нельзя не согласиться, т.к. в связи с использованием (верным и не верным) различных терминов в практической деятельности учителей возникает желание привести трактовки величин в начальных классах в соответствие с трактовкой этих понятий в науке.
Как отмечает Р.Н.Шикова, предваряя изучение конкретных величин, прежде всего, необходимо ознакомить учащихся со свойствами различных предметов и научить учащихся выявлять как качественные, так и количественные свойства: например, сравнить 2 кубика одинакового цвета по размеру и по массе. Сравнивая большой и маленький кубики, ученики приходят к выводу, что один из них больше по размеру, а другой больше, например, по массе. Выполняя такие упражнения, учащиеся начинают понимать, что сравнение нужно проводить по определенному свойству. При измерении тех или иных величин важно, чтобы учащиеся осознавали, что величина - это свойство предметов, по отношению к которому можно проводить сравнение и сложение.
Особенности математического блока УМК «Школа России»
Авторы: М.И. Моро, Ю.М. Колягин, М.А. Бантова, Г.В. Бельтюкова, С.И. Волкова, С.В. Степанова.
Данный начальный курс математики интегрированный: в нем объедены арифметический, алгебраический и геометрический материал. Основу составляют представления о натуральном числе и нуле, четырех арифметических действиях с целыми неотрицательными числами и важнейших их свойствах, а также основанное на этих знаниях осознанное и прочное усвоение приемов устных и письменных вычислений. Важное место занимает ознакомление с величинами и их измерением.
Курс построен концентрически, что позволяет соблюсти постепенность в нарастании трудности учебного материала, и создает хорошие условия для совершенствования формируемых знаний, умений и навыков.
Ведущие принципы обучения:
учет возрастных особенностей учащихся;
органическое сочетание обучения и воспитания;
усвоение знаний и развитие познавательных способностей;
практическая направленность преподавания;
индивидуальный подход к учащимся.
Практическая направленность методики выражена в следующих положениях:
1. Сознательное усвоение детьми различных приемов вычислений обеспечивается за счет использования рационально подобранных средств наглядности и моделирования с их помощью тех операций, которые лежат в основе рассматриваемого приема. Предусмотрен постепенный переход к обоснованию вычислительных приемов на основе изученных теоретических положений (переместительное свойство сложения, связь между сложением и вычитанием, сочетательное свойство сложения и др.).
2. В программе заложен механизм формирования у детей сознательных и прочных навыков устных и письменных вычислений, доведения до автоматизма знания табличных случаев действий. Этому способствует хорошо распределенная во времени, оптимальная насыщенная система упражнений, а также ограничение действий над числами пределами миллиона, отказ от изучения ряда относительно сложных для детей этого возраста вопросов, не имеющих принципиального значения для продолжения математического образования.
3. Алгоритмизация курса выражена в усилении роли алгоритмов при рассмотрении таких вопросов, как письменные вычисления, правила выполнения действий в числовых выражениях, проверка действий и т.п. Введены новые алгоритмы, усовершенствованы традиционные.
4. Рассмотрение теоретических вопросов курса опирается на жизненный опыт ребенка, практические работы, различные средства наглядности, подведение детей на основе собственных наблюдений к индуктивным выводам, сразу же находящим применение в учебной практике.
5. Система упражнений, направленных на выработку навыков, предусматривает их применение в разнообразных условиях. Тренировочные упражнения рационально распределены во времени. Значительно усилено внимание к практическим упражнениям с раздаточным материалом, к использованию схематических рисунков, а также предусмотрена вариативность в приемах выполнения действий, в решении задач.
6. На первых порах обучения важное значение имеет игровая деятельность детей на уроках математики. В программе приведен примерный перечень дидактических игр и игровых упражнений.
Основные содержательные линии: «Нумерация чисел», «Арифметический материал», «Алгебраический материал», «Геометрический материал», «Дроби и доли», «Текстовые задачи», «Величины и их измерение».
При формировании представлений о величинах (длине, массе, площади и др.) учитель опирается на опыт ребенка, уточняет и расширяет его. Так, при ознакомлении с понятием длины сначала используют такие приемы, как сравнение «на глаз», затем прием наложения, на следующем этапе вводятся различные мерки. В ходе выполнения таких заданий учащиеся подводятся к самостоятельному выводу о необходимости введения единых общепринятых единиц измерения каждой величины. Дети знакомятся с измерительными инструментами.
1 класс: В концентре «Десяток» учащиеся знакомятся с длиной отрезка, единицей измерения – сантиметр. Организуется работа по формированию временных представлений: сначала, потом, до, после, раньше, позже. При изучении чисел от 11 до 20 полученные знания закрепляются, вводится новая единица измерения – дециметр. Устанавливаются соотношения между ними. Кроме того, происходит знакомство с часом, дети учатся определять время по часам с точностью до часа. Изучение массы и объема начинается с введения единиц измерения – килограмм и литр.
2 класс: Полученные в 1 классе знания закрепляются и уточняются на новом числовом множестве – числа от 1 до 100. Вводится понятие – длина ломаной. Рассматриваются единицы измерения и соотношения между ними: длины – сантиметр, дециметр, миллиметр; времени – час, минута (определение времени по часам с точностью до минуты).
Кроме того, учащиеся знакомятся с периметром многоугольника.
3 класс: Площадь. Единицы площади: квадратный сантиметр, квадратный дециметр. Соотношение между ними. Площадь прямоугольника (квадрата).
Единицы времени: год, месяц, сутки.
Единица длины – метр. Соотношения метра и миллиметра, сантиметра, дециметра.
Единица массы – грамм. Соотношение грамма и килограмма.
Ознакомление с единицами измерения величин и их соотношениями проводится в течение всех лет обучения в начальной школе.
Одной из основных задач четвертого года обучения становится пополнение и обобщение этих знаний. Необходимо рассмотреть соотношение между единицами каждой величины.
Другие рефераты на тему «Педагогика»:
- Исследование особенностей физического развития детей в условиях Крайнего Севера на примере МОУ "ЦО с. Канчалан"
- Физическое воспитание в школе
- Позиция педагога при реализации проектного метода в образовании
- Характеристика темы программы № 30 "Приготовление пресного теста и изделий из него"
- Развитие критического стиля мышления
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения