Методические особенности введения показательной функции в курсе математики средней школы
9. Функция у=0,7х возрастает на R.
10. График функции у=2 х проходит через точку (0; 1).
Методические особенности изучения степенной функции
Степень с рациональным показателем является наиболее важным этапом изучения степенной функции , где x>0, α, и наиболее трудным для восприятия материалом в школьном курсе алгебры.
Подходы к изучению степенной функции в науке и в школьном курсе математике различны. Существуют различные способы определения степенной функции; наиболее распространенное и наиболее общее из них – аксиоматическое.
Определение. Степенной функцией называется любой непрерывный гамоморфизм группы R в себя, то есть любая функция f, отображающая множество в себя, обладающая свойствами:
1)для всех x, y
2) – непрерывна.
Для некоторых значений α степенная функция допускает продолжение на более широкую область определения, чем . Например, при на , кроме этого ; если же , где , то только на .
При α>0 можно доказать, что lim=0 при , поэтому, чтобы не нарушалась непрерывность функции , и в этомслучае полагают, что .
При нечетном и функция допускает естественное продолжение на всю числовую прямую; при четном n – это невозможно.
Равенство по сути задает функциюкак функцию, обратную функции , поэтому функцию , например, можно считать определенной для всех , а функцию только для неотрицательных .
В общем виде на не накладывается никакие условия, поэтому функция считается определенной на множестве .
При изучении степенной функции в школьном курсе математики подходят совсем с других позиций: постепенно расширяются значения числа , причем рассматриваются не функции, например, , , а вводится понятие степени определенного вида.
Получаем следующую последовательность: степень с натуральным показателем (7 класс) – степень с нулевым и целым отрицательным показателем (7 класс) – степень с рациональным нецелым показателем (11 класс) – степень с иррациональным показателем (11 класс).
Основным мотивом введения показателей является выполнение свойств степеней.
, .
Такое расмотрение приводит к ограничениям на и . Подход достаточно естественный и мотивированный, но только до момента рассмотрения степени с рациональным показателем.
Введению степени с рациональным показателем в школьном курсе математики предшествует рассмотрение действий с корнями. Уже на этом этапе проявляются разногласия автором различных учебников и учебных пособий по математике. Большинство из них определяют корень n – ой степени из положительного числа для всех (например, «Математика в понятиях, определениях и терминах» из серии «библиотека учителя математики», учебники по математике К.О. Ананченко и др.). Авторы же учебного пособия по алгебре для 11 класса дают следующее определение.
Пусть k – целое число, n – натуральное число, не равное 1. Степенью положительного числа с рациональным показателем называется положительный корень n – ой степени из числа .
.
Такие разногласия вряд ли желательны, поэтому учителю приходится объяснять, что при n=1 получаем равенство.!!!!!
Некоторые задания авторов данного учебного пособия сформулированы, с нашей точки зрения, некорректно. Например, задание 1.134: Запишите корни в виде степени с рациональным показателем: , , .
Выполнить это задание можно только для первого примера, во всех остальных случаях выражения имеют смысл при всех значениях переменных (в последнем примере ), переход от корней к степеням с рациональным показателем сужает область значений, при которых выражения имеют смысл.
Другие рефераты на тему «Педагогика»:
- Экологическое воспитание младших школьников на уроках окружающего мира
- Теоретическое обоснование использования технических средств в обучении
- Противоречия в тенденциях развития современного образования
- Исследование особенностей физического развития детей в условиях Крайнего Севера на примере МОУ "ЦО с. Канчалан"
- Формирование привычек здорового образа жизни у младших подростков с девиантным поведением
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения