Приемы активизации познавательной деятельности
Автоматизм (свернутость) — ученик выделяет и выполняет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операций.
Программа предусматривает разную степень автоматизации различных случаев выполнения арифметических действий. Высокая степень автоматизации должна быть достигнута по отношению к табличным случаям (5+3, 8—5,9+6, 15—9, 7-6, 42:6). Здесь долж
ен быть достигнут уровень, характеризующийся тем, что ученик сразу же соотносит с двумя данными числами третье число, которое является результатом арифметического действия, не выполняя отдельных операций. По отношению к другим случаям арифметических действий происходит частичная автоматизация вычислительных навыков: ученик предельно быстро выделяет и выполняет систему операций, не объясняя, почему выбрал эти операции и как выполнял каждую из них. В этом смысле и говорят об автоматизации вычислительных навыков. Заметим, что осознанность и автоматизм вычислительных навыков не являются противоречивыми качествами. Они всегда выступают в единстве: при свернутом выполнении операций осознанность сохраняется, но обоснование выбора системы операций происходит свернуто в плане внутренней речи.
Благодаря этому ученик может в любой момент дать развернутое обоснование выбора системы операций.
Прочность — ученик сохраняет сформированные вычислительные навыки на длительное время.
Перейдем к методике формирования вычислительных навыков.
Формирование вычислительных навыков, обладающих названными качествами, обеспечивается построением начального курса математики и использованием соответствующих методических приемов.
В целях формирования осознанных, обобщенных и рациональных навыков начальный курс математики строится так, что изучение вычислительного приема происходит после того, как учащиеся усвоят материал, являющийся теоретической основой этого вычислительного приема. Например, сначала ученики усваивают свойство умножения суммы на число, а затем это свойство становится теоретической основой приема внетабличного умножения. Так, при умножении 15 на 6 выполняется следующая система операций, составляющая вычислительный прием: 1) число 15 заменяем суммой разрядных слагаемых 10 и 5; 2) умножаем на 6 слагаемое 10, получится 60; 3) умножаем на 6 слагаемое 5, получится 30; 4) складываем полученные произведения 60 и 30, получится 90. Как видим, здесь применение свойства умножения суммы на число (термин «распределительный закон» в начальном курсе не вводится) определило выбор всех операций, поэтому и говорят, что прием внетабличного умножения основан на свойстве умножения суммы на число или что свойство умножения суммы на число — теоретическая основа приема внетабличного умножения. Легко заметить, что кроме свойства умножения суммы на число здесь использованы и другие знания, а также ранее сформированные вычислительные навыки: знание десятичного состава чисел (замена числа суммой разрядных слагаемых), навыки табличного умножения и умножения числа 10 на однозначные числа, навыки сложения двузначных чисел. Однако выбор именно этих знаний и навыков диктуется применением свойства умножения суммы на число.
Общеизвестно, что теоретической основой вычислительных приемов служат определения арифметических действий, свойства действий и следствия, вытекающие из них. Имея это в виду и принимая во внимание методический аспект, можно выделить группы приемов в соответствии с их общей теоретической основой, предусмотренной действующей программой по математике для начальных классов, что даст возможность использовать общие подходы в методике формирования соответствующих навыков.
Назовем эти группы приемов.
1. Приемы, теоретическая основа которых — конкретный смысл арифметических действий.
К ним относятся: приемы сложения и вычитания чисел в пределах 10 для случаев вида а+2, а+3, а+4, а+0; приемы табличного сложения и вычитания с переходом через десяток в пределах 20; прием нахождения табличных результатов умножения, прием нахождения табличных результатов деления (только на начальной стадии) и деления с остатком, прием умножения единицы и нуля.
Это первые приемы вычислений, которые вводятся сразу после ознакомления учащихся с конкретным смыслом арифметических действий. Они, собственно, и дают возможность усвоить конкретный смысл арифметических действий, поскольку требуют применения конкретного смысла. Вместе с тем эти первые приемы готовят учащихся к усвоению свойств арифметических действий. Таким образом, хотя в основе некоторых из названных приемов и лежат свойства арифметических действий (так, прибавление двух по единице выполняется на основе использования свойства прибавления суммы к числу), эти свойства учащимся явно не раскрываются. Названные приемы вводятся на основе выполнения операций над множествами.
2. Приемы, теоретической основой которых служат свойства арифметических действий.
К этой группе относится большинство вычислительных приемов. Это приемы сложения и вычитания для случаев вида 2+8, 54=F20, 27=F3, 40—6,45=F7, 50+23, 67+32, 74+18; аналогичные приемы для случаев сложения и вычитания чисел больших, чем 100, а также приемы письменного сложения и вычитания; приемы умножения и деления для случаев вида 14-5, 5-14, 81:3, 18-40, 180:20, аналогичные приемы умножения и деления для чисел больших 100 и приемы письменного умножения и деления.
Общая схема введения этих приемов одинакова: сначала изучаются соответствующие свойства, а затем на их основе вводятся приемы вычислений.
3. Приемы, теоретическая основа которых — связи между компонентами и результатами арифметических действий.
К ним относятся приемы для случаев вида 9 — 7, 21:3, 60:20, 54:18, 9:1, 0:6.
При введении этих приемов сначала рассматриваются связи между компонентами и результатом соответствующего арифметического действия, затем на этой основе вводится вычислительный прием.
4. Приемы, теоретическая основа которых — изменение результатов арифметических действий в зависимости от изменения одного из компонентов.
Это приемы округления при выполнении сложения и вычитания чисел (46+19, 512 — 298) и приемы умножения и деления на 5, 25, 50.
Введение этих приемов также требует предварительного изучения соответствующих зависимостей.
5. Приемы, теоретическая основа которых — вопросы нумерации чисел.
Это приемы для случаев вида a=Fl, 10 + 6, 16—10, 16—6, 57-10, 1200:100; аналогичные приемы для больших чисел.
Введение этих приемов предусматривается после изучения соответствующих вопросов нумерации (натуральной последовательности, десятичного состава чисел, позиционного принципа записи чисел).
6. При е, мы, теоретическая основа которых — правила.
К ним относятся приемы для двух случаев: а Л, а-0. Поскольку правила умножения чисел на единицу и нуль есть следствия из определения действия умножения целых неотрицательных чисел, то они просто сообщаются учащимся и в соответствии с ними выполняются вычисления.
Целый ряд случаев может быть отнесен не только к указанной группе приемов, но и к другой. Например, случаи вида 46+19 можно отнести не только к четвертой группе, но и ко второй. Это зависит от выбора теоретической основы вычислительного приема.
Другие рефераты на тему «Педагогика»:
- Система профориентационной работы во вспомогательной школе
- Социализация школьников
- Самостоятельные работы для тематического контроля знаний учащихся на уроках алгебры в 8 классе
- Проверка эффективности влияния метода проектов на процесс развития исследовательских умений у детей младшего школьного возраста
- Условия становления профессионализма артиста балета
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения