Приемы активизации познавательной деятельности
Помочь учащимся в полной мере проявить свои способности, развить инициативу, самостоятельность, творческий потенциал — одна из основных задач современной школы. Успешная реализация этой задачи во многом зависит от сформированности у учащихся познавательных интересов.
Приемы активизации познавательной деятельности очень разнообразны и имеют широкое применение в учебном процессе.
Мы рас
смотрим использование приемов активизации познавательной деятельности при работе над простой задачей. Решение любой текстовой задачи состоит из нескольких этапов: восприятие и первичный анализ задачи; поиск и составление плана решения; выполнение решения и получение ответа на вопрос задачи; проверка решения и его корректировка (если последнее необходимо) ; формулировка окончательного ответа на вопрос задачи; дополнительная работа над решенной задачей.
Как показывает практика, учителя широко применяют приемы активизации на этапе поиска решения и составления плана решения. Недостаточно активизируется деятельность учащихся при восприятии и первичном анализе задачи. Часто учителя формально подходят к этапу проверки решения, а иногда данный этап и вовсе отсутствует. Ссылаясь на нехватку времени, опускается и дополнительная работа над уже решенной задачей.
Рассмотрим приемы активизации познавательной деятельности учащихся, используемые на разных этапах решения.
Основная цель ученика на первом этапе — это понять задачу. Ученик должен четко представить себе: о чем эта задача? Что в задаче известно? Что нужно найти? Как связаны между собой данные (числа, величины, значения величин)? Какими отношениями связаны данные и неизвестные, данные и искомое? Что является искомым: число, отношение, некоторое утверждение?
Можно выделить следующие возможные приемы выполнения первого этапа решения текстовой задачи.
1. Представление жизненной ситуации, описанной в задаче, мысленное участие в ней. С этой целью полезно после чтения задачи предложить учащимся представить себе то, о чем говорится в задаче, и предложить нарисовать словесную картинку.
2. Разбиение текста на смысловые части и выделение на этой основе необходимой для поиска решения информации.
Например: «Лара нарисовала 6 астр. /3 астры она раскрасила./ Сколько астр осталось раскрасить Ларе?»
3. Переформулировка текста задачи: замена описания данной в ней ситуации
другой, сохраняющей все отношения и зависимости и их количественные характеристики, но более явно их выражающие.
Цель переформулировки — опустить несущественные детали, уточнить и раскрыть смысл существенных элементов.
Например, решение задачи: «Утром в магазине было 30 книжных шкафов. К концу рабочего дня осталось 12 шкафов. Сколько шкафов продали за день?» — удобнее искать, если текст ее будет сформулирован так: «Было 30 шкафов Осталось 12 шкафов. Сколько шкафов продали?»
4. Очень важно при работе над задачей научить детей выделять основные (опорные) слова, которые связаны с действием, соответствующим сюжету. Например: «На вешалке было 8 пальто. Дети взяли 6 пальто. Сколько пальто о с т а-л о с ь?» Основные слова —было, взяли, осталось.
С этой целью проводится работа с опорными (основными) словами без числовых данных. Например, читая задачу: «Первоклассники сделали игрушки. Несколько игрушек они отдали в детский сад. Сколько игрушек осталось у первоклассников?»,— учитель выставляет на полотне карточки со словами', сделали, отдали, осталось. Учащиеся получают задание поставить между ними знаки «+», «—», «=» и обосновать, почему выбрали тот или иной знак, после чего выясняется, какое слово в задаче заменяет самое большое число, какое — самое маленькое число.
5. Исследование решения задачи (установление условий, при которых задача имеет или не имеет решение, имеет одно или несколько решений, а также установление условий изменения значения одной величины в зависимости от измерения другой).
Например, предлагается задача, в которой необходимо подобрать пропущенные числа и решить ее: «Вова прочитал за меся . книг, а Толя на . книг(и) меньше. Сколько книг прочитал Толя?»
Проводя беседу, учитель спрашивает:
— Каким действием будете решать задачу? (Вычитанием.)
— Что надо учитывать при подборе первого числа? (Надо взять столько книг, сколько можно прочитать за месяц.)
— Примерно сколько? (10 книг или меньше.)
— Что надо учитывать при подборе второго числа? (Оно должно быть меньше перврго или равняться ему.)
Подберите числа и прочитайте задачу. (Вова прочитал за месяц 10 книг, а Толя на 2 книги меньше. Сколько книг прочитал Толя?)
— Решите эту задачу. Может ли второе число равняться 10? (Может, тогда получится, что Толя прочитал нуль книг, т. е. не прочитал ни одной книги.)
— Может ли второе число равняться 11? (Нет, так как нельзя 10 уменьшить на 11.)
Перейдем к рассмотрению приемов активизации познавательной деятельности, которые используются на втором этапе решения задач.
Цель ученика на втором этапе — выделить величины, данные и искомые числа, входящие в задачу, установить связи между данными и искомым и на этой основе выбрать соответствующее арифметическое действие.
Использование различных методических приемов при обучении решению простых задач способствует развитию кругозора учащихся, правильному пониманию математического смысла различных жизненных ситуаций, активизирует их познавательную активность. На данном этапе используются различные способы моделирования.
1. Предметное моделирование.
Рассматривается, например, задача: «У Лены было 6 карандашей, а у Тани 4 карандаша. Сколько карандашей у обеих девочек?» К доске выходят две девочки. У одной из них в руке 6 карандашей, у другой — 4 карандаша. Такое воспроизведение уточняет представления детей, возникшие при восприятии ими задачи.
Для закрепления умения строить предметные модели можно предлагать учащимся такие задания:
1) Изобразите с помощью кружков красного и желтого цвета то, о чем говорится в задаче: «У дома 3 клумбы и у школы столько же клумб. Сколько всего клумб у дома и у школы?» Что обозначают кружки красного цвета? Кружки желтого цвета?
2) На фланелеграфе — синие прямоугольники условно изображают тетради у Тани, а зеленые — тетради у Димы. Составь те задачу. Покажите те тетради, число которых требуется узнать в задаче.
3) На фланелеграфе — предметные модели нескольких задач (рис. 1). Учитель читает задачу: «У Володи было 8 красных кружков, а синих в 2 раза меньше.
Сколько синих кружков было у Володи .Учащиеся должны показать соответствующую модель.
Рис. 1
2. Графические модели (это рисунки и чертежи, которые помогают понять задачу, организовать поиск ее решения).
Рисунок может быть таким, что по нему, не выполняя арифметического действия, легко дать ответ на поставленный в задаче вопрос, например: «У Иры было 5 маленьких матрешек. 3 она подарила. Сколько матрешек стало у Иры?» (Рис. 2).
Рис. 2
3. Схематическая модель — это краткая запись задачи (в методической литературе рассматриваются различные виды краткой записи).
Другие рефераты на тему «Педагогика»:
- Воспитание в современной школе: проблемы, достижения, инновации
- Историческое краеведение как элемент современного исторического образования
- Методика заучивания стихотворений в детском саду
- Методика обучения технике ударов по мячу футболистов 7–8 лет
- Особенности организации культурно-досуговой деятельности детей
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения