Исследование твердых электролитов
1.1 Основные положения теории дефектов в ионных кристаллах
Сложившиеся к началу XX столетия представления о твердых, телах как о кристаллических решетках, составленных из регулярно повторяющихся структурных единиц, не позволяли объяснить явления переноса вещества и электрического заряда в этих материалах.
Понятие о термических, точечных дефектах впервые было предложено в 1926 г. К.Ч Фре
нкелем при рассмотрении механизма электропроводности ионных кристаллов [12]. При этом предполагалась, что в результате тепловых флуктуации часть катионов покидает свои нормальные места, переходя в междоузлия, образуя равное количество вакансий и "междоузельных катионов данного сорта. Такой тип дефектов впоследствии назвали "дефекты по Френкелю". Галогениды серебра AgCl и АgВr, нитраты щелочных металлов являются примером систем с преобладанием дефектов по Френкелю. Фториды щелочноземельных элементов (ЩЗЭ) обладают антифренкелевскими дефектами, т.е. в них при тепловом равновесии существуют равные количества вакансий анионов фтора и междоузельных анионов фтора. В 1935 г. В. Шоттки показал, что в ионных кристаллах может реализоваться такой предельный случай, когда равное число катионов и анионов уходит из нормальных мест в решетке на поверхность кристалла, создавая катионные и анионные вакансии и сохраняя при этом условие электронейтральности объема кристалла в целом [13]. Преобладающий тип дефектов по Шоттки имеют щелочногалоидные кристаллы.
Теоретически возможно существование антишоттковских дефектов равное количество катионов и анионов в междоузельных положениях, однако они пока не обнаружены ни в одной реальной кристаллической структуре.
Анализ большого числа стехиометрических ионных кристаллов позволяет сделать вывод, что наиболее распространенным типом разупорядоченности являются дефекты по Шоттки. Существование неконтролируемых примесных ионов или примеси (область малых концентраций), специально введенной в кристаллические объекты при легировании их в процессе выращивания, является также распространенным типом точечных дефектов.
Точечные дефекты термодинамически обратимы, поскольку их концентрация в твердом теле зависит от температуры и давления. Эти дефекты зачастую могут легко двигаться в кристалле посредством скачков атомов или ионов в междоузлиях либо в результате миграции вакансий, что эквивалентно смещению структурных элементов в направлении, обратному тому, в котором диффундируют дефекты. Очевидно, что явление переноса вещества тесно связано с существованием дефектов.
Теория точечных дефектов — одна из наиболее важных частей современной физической химии и физики твердого тела. Наличие точечных дефектов во многом определяет физико-химические свойства твердого тела, такие, как электропроводность ионных кристаллов, их оптические и полупроводниковые свойства, каталитическую активность, реакционную способность твердых тел и т.д.
Теория дефектов дает возможность количественно интерпретировать все физико-химические явления, связанные с существованием точечных дефектов в кристаллических твердых телах. Здесь рассмотрим лишь главные принципиальные концепции теории дефектов, которые, прежде всего, связаны с процессами переноса вещества в твердых телах. Основные положения теории дефектов были разработаны Френкелем, Иостом, Вагнером, Шоттки [12-15]. Затем эта теория была развита Хауффе, Вервеем и Лидьярдом, давшим возможность объяснить эффект влияния примесей на характер и степень разупорядоченности ионных кристаллических решеток [1, 16]. В 60-е годы значительный вклад в теорию точечных дефектов был сделан Крегером и Винком [17]. Впоследствии были обнаружены существенные ограничения в области применения термодинамической теории, так как стало известно, что структура дефектов в кристаллах с большой степенью отклонения от стехиометрии либо при повышенных концентрациях второй компоненты в смешанных кристаллах, как правило, более сложная, чем та, которая предполагается классической теорией точечных дефектов.
Однако необходимо подчеркнуть, что в большинстве случаев концентрация точечных дефектов даже при очень высоких температурах не превышает предельного значения. Это имеет место в случае галидов, сульфидов, оксидов металлов основных групп периодической системы, а также применимо к значительному количеству оксидов переходных металлов. Потому теория точечных дефектов является важной и постоянно развивающейся основой интерпретации экспериментальных результатов при изучении многих физнко-химических свойств твердых тел. В первом приближении можно ограничиться случаем невзаимодействующих дефектов, а затем учесть дальнодействуюшее кулоновское взаимодействие.
1.2 Основные положения физики и химии суперионных материалов
1.2.1 Структурные особенности
С известной степенью условности к СИП относятся соединения с проводимостью выше 10-3 Ом-1см-1 и (что не менее важно) низкими энергиями активации, Ea < 0,4 эВ. Такие высокие значения электропроводности обусловлены во многом особенностями атомного строения рассматриваемых материалов, а точнее, особым (зачастую уникальным) характером разупорядочення одной или нескольких подрешеток кристалла (ионных подсистем).
Развитые ранее классические представления о природе и механизмах ионной проводимости не могут объяснить столь высокие значения проводимости или коэффициента диффузии, реализуемые в ТЭЛ. Действительно, из уравнения (10) следует, что для обеспечения высокой проводимости желательно участие максимально возможного числа ионов (высокая концентрация носителей я) с наибольшей подвижностью и. Это означает, что коваленткые связи в кристалле должны быть слабыми. Качественное рассмотрение данной проблемы позволяет сформулировать дополнительные условия существования суперионной проводимости, основанные на структурных особенностях материала [20,21]:
Энергетически эквивалентных кристаллографических позиций (в элементарной ячейке) для размещения потенциально подвижных ионов должно быть больше, чем самих ионов.
Энергия разупорядочення ионов по позициям и энергия, затрачиваемая на движение, должны быть малыми. Энергетические барьеры между соседними позициями должны быть небольшими (в cравнении с кТ), что в случае выполнения первого условия приведет к статистическому распределению мобильных ионов по "разрешенным" решеточным позициям.
Необходимо существование связной сетки "каналов" для движения ионов, в противном случае быстрым будет лишь "локальное" движение частиц (в пределах одной или нескольких элементарных ячеек).
Все ТЭЛ можно разделить на несколько типов в соответствии с величиной ионной проводимости и особенностями кристаллического строения. К настоящему времени обнаружено и изучено значительное (см. гл. IV) количество кристаллов с собственным структурным разупорядочением, причем число их непрерывно возрастает. Наиболее ярким представителем ТЭЛ со структурным разупорядочением является соединение, RbAg4I5 проводимость которого, осуществляемая разупорядоченными катионами Ag+, при комнатной температуре составляет 0,35 0м-1*см-1 (для сравнения заметим, что эта величина более чем на 16 порядков превышает ионную проводимость поваренной соли при той же температуре).