Экономико-статистическое моделирование производительности труда
у = а0 + axxx + f2*flj2 + …+ a,,pcт
где у - функция регрессии;
jq, x2,…, хт - независимые переменные; flj, а2,-, aт - коэффициенты регрессии;
д0 - свободный член уравнения;
т - число факторов, включаемых в модель[17, с. 172].
2. Регрессия относительно формы зависимости:
· линейная регрессия, выражаемая линейной функцией;
· нелинейная регрессия, выражаемая нелинейной
функцией.
3. В зависимости от характера регрессии различаются следующие ее виды:
· положительная регрессия: она имеет место, если с увеличением (уменьшением) объясняющей переменной значения зависимой переменной также соответственно увеличиваются (уменьшаются);
· отрицательная регрессия: в этом случае с увеличением или уменьшением объясняющей переменной зависимая переменная уменьшается или увеличивается.
4. Относительно типа соединения явлений различаются:
· непосредственная регрессия: в этом случае зависимая и объясняющая переменные связаны непосредственно друг с другом;
· косвенная регрессия: в этом случае объясняющая переменная действует на зависимую через ряд других переменных;
· ложная регрессия: она возникает при формальном подходе к исследуемым явлениям без уяснения того, какие причины обусловливают данную связь.
Регрессия тесно связана с корреляцией. Корреляция в широком смысле слова означает связь, соотношение между объективно существующими явлениями. Связи между явлениями могут быть различны по силе. При измерении тесноты связи говорят о корреляции в узком смысле слова. Если случайные переменные причинно обусловлены, и можно в вероятностном смысле высказаться об их связи, то имеется корреляция.
Понятия «корреляция» и «регрессия» тесно связаны между собой. В корреляционном анализе оценивается сила связи, а в регресс ионном анализе исследуется ее форма. Корреляция в широком смысле объединяет корреляцию в узком смысле и регрессию. [15, с. 245-247].
Корреляция, как и регрессия, имеет различные виды, так различают:
1) относительно характера – положительную и отрицательную
2) относительно числа переменных - простую, множественную, частную;
3) относительно формы связи – линейную, нелинейную;
4) относительно типа соединения – непосредственную, косвенную, ложную.
Любое причинное влияние может выражаться либо функциональной, либо корреляционной связью. Но не каждая функция или корреляция соответствует причинной зависимости между явлениями. Поэтому требуется обязательное исследование причинно-следственных связей.
Исследование корреляционных связей мы называем корреляционным анализом, а исследование односторонних стохастических зависимостей - регрессионным анализом.
Корреляционный анализ проводится между величинами, не имеющими причинно-следственного характера отклонений. Цель корреляционного анализа - количественное определение тесноты связи между признаками. Если исследуются только 2 признака, то говорят о простой (парной) корреляции. Если исследуется связь между тремя и более признаками, то имеет место множественная корреляция. [25, с. 95-96].
При оценке корреляционной связи не ставится вопрос о характере причинно-следственных соотношений между признаками. Оценивается только степень тесноты между ними. Оценку связи делают с помощью коэффициента корреляции г, который изменяется в пределах -1 > r > + 1.
Коэффициент корреляции - мера тесноты связи между признаками. Положительное значение коэффициента корреляции означает, что с увеличением одного показателя возрастает и другой, и наоборот, отрицательное значение определяет уменьшение величины одного показателя при возрастании другого.
Коэффициент корреляции свыше 0,8 означает тесную причинно- следственную связь.
Коэффициент множественной корреляции определяют по усложненной формуле, которая используется в статистике. В научных исследованиях и практической деятельности пользуются готовыми компьютерными программами для персонального компьютера.
Чтобы составить объективное представление о том, сильна или слаба связь между показателями, используют так называемый коэффициент детерминации, на основании которого можно сделать вывод о количестве случаев изменения одного показателя (признака) под влиянием другого. Коэффициент детерминации представляет собой квадрат коэффициента корреляции г, или то же, но выраженное в процентах ( r2 * 100)
Итак, коэффициент корреляции, возведенный в квадрат и умноженный на 100 %, называется коэффициентом детерминации, который показывает, насколько результативный признак зависит от анализируемых одно- и двухфакторных признаков.
Корреляционный анализ позволяет установить связь между признаками и показывает форму этой связи, но он не дает представления об изменении одного показателя ряда в зависимости от изменения другого. Для исследования же нередко необходимо знать, насколько (в среднем) изменяется один признак при изменении другого на единицу. Эти важные и более глубокие свойства связи раскрывает регрессионный анализ, который для исследований различных вопросов экономики представляет большой интерес.
Применяя регрессионный анализ, можно, например, установить по некоторым показателям значения показателей совсем других размерностей, зная лишь о связи между ними и не затрачивая времени и средств на их непосредственное экспериментальное измерение или определение.
Регрессионный анализ - метод статистической обработки наблюдений, в результате которой оказывается возможным составить уравнение регрессии и получить количественную оценку влияния факторных признаков х на результативный у.[5, с. 130-132].
Уравнение у i =b10 x1j +b20 x20 + +b mn x mj ,
где b10, b20,…,bmn- средняя квадратическая оценка случайных факторов;
x1i, x20,…, xmn - значения непрерывных переменных х1, х2; называют уравнением регрессии.
Регрессионные зависимости могут быть самыми различными, важно лишь установить их экспериментально и сделать правильное математическое описание соответствующими формулами.
Регрессионный анализ проводят для установления связи между величинами, которые можно рассматривать как функции и аргументы, т. е. когда четко выражен характер причинно-следственных отношений между исследуемыми признаками.
Коэффициент регрессии показывает, на сколько изменится в среднем значение результативного признака у при увеличении факторного х.
Характеристикой относительного изменения прироста функции у=J{х) при малых относительных изменениях прироста аргумента х является эластичность функции.
Корреляционный и регрессионный анализ имеют свои задачи . [13, с. 295-299].
Задачи корреляционного анализа
1. Измерение степени связности (тесноты, силы) двух и более явлений. Здесь речь идет в основном о подтверждении уже известных связей.
2. Отбор факторов, оказывающих наиболее существенное влияние на результативный признак на основе измерения тесноты связи между явлениями.
3. Обнаружение неизвестных причинных связей. Корреляция непосредственно не выявляет причинных связей между явлениями, но устанавливает степень необходимости этих связей и достоверность суждений об их наличии. Причинный характер связей выясняется с помощью логически-профессиональных рассуждений, раскрывающих механизм связей.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели