Эконометрическое моделирование финансового рынка
2. Метод среднего темпа роста.
Осуществляется, когда общая тенденция характеризуется показательной кривой
(2.12)
где - последний уровень ряда динамики;
k- средний коэффициент роста.
3. Выравнивание рядов по какой-либо аналитическо
й формуле.
Экстраполяция дает возможность получить точечное значение прогнозов. Точное совпадение фактических данных и прогнозных точечных оценок, полученных путем экстраполяции кривых, имеет малую вероятность.
Любой статистический прогноз носит приближенный характер, поэтому целесообразно определение доверительных интервалов прогноза:
, (2.13)
где - коэффициент доверия по распределению Стьюдента при уровне значимости ;
- средняя квадратическая ошибка тренда; k- число параметров в уравнении;
- расчетное значение уровня.
Аналитические методы основаны на применении метода наименьших квадратов к динамическому ряду и представлении закономерности развития явления во времени в виде уравнения тренда, то есть математической функции уровней динамического ряда (y) от факторного времени (t): y=f(t).
Аналитическое сглаживание позволяет не только определить общую тенденцию изменения явления на рассматриваемом отрезке времени, но и выполнять расчеты для таких периодов, в отношении которых нет исходных данных.
Адаптивные методы используются в условиях сильной колеблемости уровней динамического ряда и позволяют при изучении тенденции учитывать степень влияния предыдущих уровней на последующие значения динамического ряда. К адаптивным методам относятся методы скользящих и экспоненциальных средних, метод гармонических весов, методы авторегрессионных преобразований.
Цель адаптивных методов заключается в построении самонастраивающихся моделей, способных учитывать информационную ценность различных членов временного ряда и давать достаточно точные оценки будущим членам данного ряда.
Прогноз получается как экстраполяция последней тенденции. В разных методиках прогнозирования процесс настройки (адаптации) модели осуществляется по-разному, и можно выделить:
1) метод скользящей средней (адаптивной фильтрации, метод Бонса-Дженкинса);
2) метод экспоненциального сглаживания (методы Хольда, Брауна, экспоненциальной средней).
Скользящие средние представляют собой средние уровни за определенные периоды времени путем последовательного передвижения начала периода на единицу времени. При простой скользящей средней все уровни временного ряда считаются равноценными, а при исчислении взвешенной скользящей средней каждому уровню в пределах интервала сглаживания приписывается вес, зависящий от расстояния данного уровня до середины интервала сглаживания.
Особенность метода экспоненциального сглаживания в том, что в процедуре выравнивания каждого наблюдения используется только значения предыдущих уравнений, взятых с определенным весом. Смысл экспоненциальных средних состоит в нахождении таких средних, в которых влияние прошлых наблюдений затухает по мере удаления от момента, для которого определяется средние.
3 Модель временного ряда на примере продажи акций
Рассмотрим пример на основе данных цен продажи акций. Даны цены (открытия, максимальная, минимальная и закрытия) за 10 дней. Интервал сглаживания был принят равным пяти дням. Нужно было рассчитать:
-экспоненциальную скользящую среднюю;
-момент;
-скорость изменения цен;
-индексы %R, %К и %D.
Расчеты проводились для дней, для которых эти расчеты можно выполнить на основании имеющихся данных, приведенных в раздаточном материале
Таблица 1
Дни |
Цены | ||
макс. |
мин. |
закр. | |
1 |
998 |
970 |
982 |
2 |
970 |
922 |
922 |
3 |
950 |
884 |
902 |
4 |
880 |
823 |
846 |
5 |
920 |
842 |
856 |
6 |
889 |
840 |
881 |
7 |
930 |
865 |
870 |
8 |
890 |
847 |
852 |
9 |
866 |
800 |
802 |
10 |
815 |
680 |
699 |
Решение.
Экспоненциальная скользящая средняя (ЕМА). При расчете ЕМА учитываются все цены предшествующего периода, а не только того отрезка, который соответствует интервалу сглаживания. Однако последним значениям цены придается большее значение, чем предшествующим. Расчеты проводятся по формуле:
(3.1)
где k=2/(n+1), n – интервал сглаживания;
Ct – цена закрытия t-го дня;
ЕМАt – значения ЕМА текущего дня t.
Составим таблицу рассчитанных значений ЕМА:
Таблица 2
t |
Цена закрытия, Ct |
EMAt |
1 |
982 |
- |
2 |
922 |
- |
3 |
902 |
- |
4 |
846 |
- |
5 |
856 |
|
6 |
881 |
|
7 |
870 |
|
8 |
852 |
874,9926 |
9 |
802 |
850,6617 |
10 |
699 |
800,1078 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели