Теория игр и статических решений
1. Найдите решение по доминированию в данной игре:
2. Заполните пропуски в таблице так, чтобы в этой игре в чистых стратегиях было бы 3 равновесия по Нэшу. Найдите все равновесия в смешанных стратегиях (любым способом).
стратегия игра равновесие
a |
b | |||
A |
Ф |
? | ||
? |
И | |||
B |
? |
О | ||
В |
? |
3. Двое бегут по лыжной трассе навстречу друг другу. У каждого лыжника 2 стратегии: «уступить» и «не уступить». Если один из игроков уступает другому, то его потери - О секунд, второй – не теряет ничего; если же лыжники сталкиваются, то оба теряют В секунд.
a) Составьте платежную матрицу этой игры. Найдите равновесия в чистых стратегиях.
b) Нарисуйте линии откликов игроков и найдите смешанные равновесия в этой игре.
c) Допустим теперь, что у игроков теперь 3 стратегии: «не уступить», «уступить» и «уступить пол-лыжни». Если оба уступили друг другу пол-лыжни, то потери каждого И секунд, если же один уступил пол-лыжни, а второй - нет, то лыжники столкнутся, и потери при столкновении у уступившего – В+И секунд, у неуступившего - В секунд. Найдите все равновесия по Нэшу (в чистых и в смешанных стратегиях).
4. Профсоюз заключает с фирмой соглашение на несколько лет об уровне заработной платы w>0. Профсоюз максимизирует функцию совокупной прибыли членов профсоюза (зарплата за вычетом издержек от работы): u(w,L)=wL-И*L2, фирма максимизирует свою прибыль (выпуск за вычетом зарплаты): П(w,l)=Ф*L0.5-wL.
a) Найти равновесный уровень заработной платы и занятости в статической игре.
b) Каково равновесие в динамической игре, если профсоюз достаточно мощный, чтобы навязать фирме любой уровень заработной платы, после чего фирма не может менять уровень заработной платы в течение срока контракта, но может нанимать любое количество труда L>0.
c) Каково равновесие в динамической игре, если фирма – монополист на рынке труда, и она может установить любую заработную плату, после чего профсоюз может только регулировать численность работающих на монополиста.
5. В этой игре с нулевой суммой найдите равновесие в осторожных стратегиях. Существует ли в этой игре равновесие по Нэшу в чистых стратегиях?
c1 |
c2 |
c3 |
c4 |
c5 | |
s1 |
5 |
2 |
3 |
6 |
4 |
s2 |
4 |
1 |
1 |
5 |
0 |
s3 |
6 |
0 |
4 |
9 |
-3 |
6. На корабле 50 пиратов делят 100 кусков золота по следующему правилу: первым дележ предлагает капитан. Если хотя бы половина команды (включая капитана) согласна, то на этом игра и заканчивается. Если нет, то капитана выбрасывают за борт и дележ предлагает следующий по старшинству и т.д. Найдите совершенное подыгровое равновесие в этой игре.
7. Приведите пример стратегического взаимодействия из вашей реальной жизни (укажите для этой игры – игроков; возможные стратегии участников; характер игры (с обоснованием): статическая или динамическая, с полной информацией или нет, с совершенной информацией или нет). Какое решение в этой игре было достигнуто в реальном мире? Попытайтесь объяснить - почему именно это решение реализовалось.
Пример должен быть действительно из реальный жизни, а не просто получаться из семейного спора заменой «муж» на «зять» и «театр» на «рыбалка» - такие примеры оцениваются в 0 балов!
1. Найдите решение по доминированию в данной игре
a |
b |
c |
d | |
A |
2 5 |
6 2 |
4 1 |
3 0 |
B |
1 4 |
4 3 |
1 2 |
2 1 |
C |
0 1 |
1 1 |
5 1 |
1 5 |
D |
3 2 |
1 0 |
2 0 |
4 4 |
Решение:
1. В исходной игре стратегия d строго доминирует стратегию a. Больше строго или нестрого доминирующих стратегий у первого или второго игрока нет. Очевидно, что второй игрок не будет играть стратегию a и ее можно исключить.
Получаем:
b |
c |
d | |
A |
6 2 |
4 1 |
3 0 |
B |
4 3 |
1 2 |
2 1 |
C |
1 1 |
5 1 |
1 5 |
D |
1 0 |
2 0 |
4 4 |
2. В получившейся игре видим, что стратегия С первого игрока строго доминирует стратегию D. А также стратегия В строго доминирует стратегию А. Рассмотрим оба варианта. В первом – вычеркиваем стратегию D, во втором – стратегию А.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели