Построение и анализ функции спроса на товар

Расчет коэффициентов корреляции и детерминации, проверка правильности выбранных факторов и формы связи

Мы выяснили возможность установления корреляционной связи между значениями х и соответствующими значениями у. Теперь необходимо выяснить, как изменение факторного признака влияет на изменение результативного признака.

Вычислим коэффициента корреляции по формуле (3) для расчет

а линейного коэффициента корреляции:

получим: (3)

Линейный коэффициент корреляции может принимать любые значения в пределах от минус 1 до плюс 1. Чем ближе коэффициент корреляции по абсолютной величине к 1, тем теснее связь между признаками. Знак при линейном коэффициенте корреляции указывает на направление связи - прямой зависимости соответствует знак плюс, а обратной зависимости - знак минус.

В нашем примере r= 0,990.

Кроме того, можно рассчитать коэффициент детерминации d, который равен квадрату коэффициента корреляции.

В нашем примере d = 0,981.

Это значит, что изменение расходов на товар А можно на 98,1% объяснить изменением дохода.

Остальные 1,9% могут явиться следствием:

недостаточно хорошо подобранной формы связи;

влияния на зависимую переменную каких-либо других неучтенных факторов.

Целесообразно проверить, не улучшится ли результат, если принять криволинейную форму связи.

Воспользуемся степенной функцией вида: ŷ = axb

Логарифмируем:

lg ŷ = lga + blgx. (4)

24,07 = 11*a + 28,85*b, => а=

63,26 = 28,85*a + 75,98*b

63,26 = 28,85 () + 75,98*b,

0,1282 = 0,31*b, => b = 0,4092

а =

lg у = 1,1149 + 0,4092 lgх

Для нахождения параметров а и b всю процедуру МНК проделываем не с величинами у и х, а с их логарифмами. После решения системы нормальных уравнений (2) получаем: lg a = 1,1149; b = 0,4092.

Уравнение регрессии: lg ŷ = 1,1149 + 0,4092 lg x

Сравним фактические и расчетные расходы на потребление товара А (таблица 3) и построим график полученной функции ŷ (рисунок 2).

Рисунок 2 Сравнение фактических и расчетных расходов на потребление товара А для степенного уравнения регрессии

Таблица 3 Сравнение фактических и расчетных значений расходов на потребление товара А при степенной зависимости

№ группы

Расходы на товар А

Отклонение фактических значений от расчетных (у-ŷ)

фактические (у)

Расчетные (ŷ)

абсолютные

относительные (в процентах)

1

114,00

114,00

-

0%

2

123,00

125,00

- 2,00

-2%

3

132,00

134,00

- 2,00

-2%

4

143,00

143,00

-

0%

5

152,00

151,00

1,00

1%

6

161,00

159,00

2,00

1%

7

169,00

166,00

3,00

2%

8

171,00

172,00

- 1,00

-1%

9

178,00

179,00

- 1,00

-1%

10

182,00

184,00

- 2,00

-1%

11

191,00

190,00

1,00

1%

Всего

-

-

- 1,00

-

Теснота криволинейной связи измеряется корреляционным отношением, обозначаемым через h и имеющим тот же смысл, что и r.

Теоретическое корреляционное отношение может быть рассчитано по формуле:

h=, (5)

где s2фактор-дисперсия для теоретических значений ŷ (объясненная вариация);

s2общ - дисперсия для фактических значений у (необъясненная вариация).

=

h = = 0,978

В нашем примере h = 0,978, h² = 0,958.

Как видим, степенная форма связи точнее отражает зависимость потребления товара А от дохода.

Статистическая проверка гипотез

Статистическая гипотеза - это предположение о случайной величине, проверяемые по выборке (результатам наблюдений). Будем обозначать высказанные предположения (гипотезу) буквой Н. Наша цель - проверить, не противоречит ли высказанная нами гипотеза Н имеющимся выборочным данным. Процедура сопоставления высказанной гипотезы с имеющимися выборочными данными (x1,x2,…,xn) и количественная оценка степени достоверности полученного вывода называется статистической проверкой гипотез.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы