Основы практического использования прикладного регрессионного анализа
а) Получение наилучших точечных и интервальных оценок неизвестных параметров регрессионного анализа;
б) Проверка гипотез относительно этих параметров;
в) Проверка адекватности;
г) Проверка множества предполагаемых предположений.
Исследуемый объект представлен на рисунке 3.2
Рисунок 1.2 — Вид исследуемого о
бъекта
Для корректного использования регрессионного анализа существует следующие предпосылки и следующие допущения на свойства регрессионной ошибки , ; - значение зависимой переменной, полученное подстановкой в уравнение , , ; - количество экспериментальных данных, - количество независимых переменных:
Приведем свойства и предпосылки регрессионной ошибки:
а) Свойства регрессионной ошибки:
1) В каждом опыте имеет нормальный закон распределения;
, .
2) В каждом опыте математическое ожидание равно нулю;
, .
3) Во всех опытах дисперсия постоянна и одинакова;
, .
4) Во всех опытах ошибки независимы.
, .
б) предпосылки регрессионной ошибки:
1). Матрица наблюдений имеет полный ранг;
.
2). Структура модели адекватна истинной зависимости;
3). Значения случайной ошибки не зависят от значений регрессоров ;
4). Ошибки регистрации регрессоров пренебрежимо малы по сравнению со случайной ошибкой .
1.2 Проверка предпосылок и предположений регрессионного анализа
Регрессионный анализ является одним из самых распространённых методов обработки результатов наблюдений. Он служит основой для целого ряда разделов математической статистики и методов обработки данных. Регрессионный анализ базируется на ряде предположений и предпосылок, нарушение которых приводит к некорректному его использованию и ошибочной интерпретации результатов.
Если F-критерий и показал, что подгонка модели в целом является удовлетворительной; целесообразно провести анализ остатков для проверки соблюдений предпосылок и предположений.
В этом случае исследуется набор отклонений между экспериментальными и предсказанными значениями зависимой переменной,
.
Проверка предпосылок и предположений регрессионного анализа включает в себя следующие задачи:
1) оценка случайности зависимой переменной;
2) оценка стационарности и эргодичности зависимых и независимых переменных;
3) Проверка гипотезы о нормальности распределения ошибок E;
4) Обнаружение выбросов;
5) Проверка постоянства математического ожидания и дисперсии ошибок;
6) Оценка коррелированности остатков;
7) Обнаружение мультиколлинеарности.
1.2.1 Проверка случайности
Построение моделей методом множественного регрессионного анализа требуется выполнение предположения случайности и в нормальной линейной модели вида
где – вектор наблюдений зависимой переменной;
– матрица наблюдений независимых переменных;
– вектор неизвестных коэффициентов;
– вектор ошибок.
Задача проверки случайности может быть разбита на 2 подзадачи:
1) проверка случайности собственной величины Y;
2) проверка случайности выборки, то есть допущения об отсутствии существенного смещения средней величины во времени.
Первая подзадача решается с использованием критерия серий. Для этой цели последовательность наблюдений величины Y представляют последовательностью нулей и единиц, где единицей обозначают значение, превышающее среднее или медиану, и нулем, собственно, значение меньшее медианы. После обозначения вектор наблюдений преобразуется в последовательность серий где – количество подряд идущих элементов одного вида, i – номер серии.
Доказано, что при распределение величины r близится к нормальному с характеристиками
Тогда с вероятностью 0,954 теоретическое число серий r будет находиться в пределах
Если фактическое значение попадает в указанные пределы, то Y можно считать случайной величиной.
Серией называется последовательность наблюдаемых значений, перед которыми и после которых расположены наблюдаемые значения другой категории. Если последовательность N наблюдений представляет собой независимые наблюденные значения одной и той же случайной величины, т.е. вероятность знаков (+) и (–) не меняется от одного наблюдения к другому, то выборочное распределение числа серий в последовательности есть случайная величина r со средним значением
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели