Основы практического использования прикладного регрессионного анализа
Мультиколлинеарность приводит к:
1)снижению точности, дисперсия оценок увеличивается, параметры модели коррелированны, что приводит к трудностям в интерпретации модели;
2)оценки коэффициентов становятся чувствительны к особенностям множества выборочных данных.
Причиной мультиколлинеарности могут служить:
1) наличие автокорреляции в ряду наблюдений;
2) корреляция между переме
нными;
3) высокий уровень помех.
Под мультиколлинеарностью будем понимать сопряженность независимых переменных, это означает "почти линейную зависимость" векторов , т.е. существование чисел таких, что:
(3.3)
Когда равенство (3.3) имеет место, говорят о строгой мультиколлинеарности.
При наличии мультиколлинеарности оценки МНК становятся положительными, т.е. дисперсия оценок будет весьма большой. При наличии (3.3) матрица становится плохо обусловленной, в частности , т.е. .
1.4.1 Рекомендации по устранению мультиколлинеарности
Наиболее простой способ устранения мультиколлинеарности – исключение одной переменной из пары переменных, коэффициент корреляции между которыми больше 0,8.
Простейшие рекомендации по устранению мультиколлинеарности сводятся к сокращению рассматриваемого множества объясняющих переменных за счет тех из них, которые линейно связаны с уже включенными в модель. Выполнение этих рекомендаций ведет к построению сокращенной модели, которая не всегда соответствует требованию наблюдательности и управляемости. Чтобы избежать нежелательных эффектов мультиколлинеарности, сохранив при этом весь интересующий нас набор объясняющих переменных, предлагается увеличить размеры выборки путем получения дополнительной информации. Ясно, что не любое произвольное увеличение выборки ведет к ослаблению эффектов мультиколлинеарности.
Часто для устранения мультиколлинеарности используют приемы, основанные на предварительном преобразовании исходных данных путем получения отклонений от тренда. Однако, регрессионная модель, полученная благодаря таким преобразованиям, слабо поддается интерпретации. Иногда используют априорную информацию об имеющихся между параметрами связях в виде ограничений при вычислении оцениваемых параметров регрессии. За исключением простейших случаев, реализация этих подходов достигается существенным усложнением вычислительной процедуры нахождения оценок. Широкое распространение получили методы устранения мультиколлинеарности, основанные на замене исходного множества объясняющих переменных главными компонентами с последующим отбрасыванием тех из них, которые незначительны в уравнении регрессии. Близким к рассмотренному можно считать методы, основанные не на компонентном, а на факторном анализе, причем аналогия прослеживается как по достоинствам, так и по недостаткам.
В тех случаях, когда перечень объясняющих переменных регрессионной модели слишком велик, рекомендуется разделить их на группы высоко коррелированных и в каждой группе построить обобщающие факторы в виде главной компоненты, которые далее используются как новые переменные строящейся модели.
1.4.2 Доверительные интервалы для уравнения регрессии
Для проведения углубленного анализа уравнения регрессии прежде всего необходимо убедиться в том, что вектор ошибок Е распределен по нормальному закону. Для построения доверительных интервалов коэффициентов модели, предсказанных значений уравнения регрессии, среднего значения используются стандартные статистические распределения, требующие нормальности распределений.
1.4.3 Определение доверительного интервала для истинного значение уравнения регрессии
Определение доверительного интервала сводится к отысканию интервала, в котором с вероятностью содержится истинное значение , соответствующее некоторому опыту из матрицы наблюдений .
Другими словами, имеется интервал, в котором с заданной вероятностью находится линия регрессии.
Подставляя в эмпирическое уравнение регрессии получим оценки для каждого наблюдения вида:
Различие между и объясняется действием различных ошибок.
Отметим, что имеет случайный характер, оценки и распределены нормально с параметрами
,
.
Можно утверждать, что . Другими словами y является состоятельной оценкой истинного значения , соответствующего опыту , т.е. при неограниченном числе опытов эмпирическая линия регрессии совпадает с действительной зависимостью
Составляя дробь Стьюдента, получаем:
.
Задавшись уровнем значимости и найдя табличное значение можно построить достоверный интервал для в виде
.
1.4.4 Свойства доверительных интервалов
а) Доверительный интервал симметричен относительно выборочной оценки ;
б) Ширина доверительного интервала зависит от и ;
в) Ширина доверительного интервала минимальна, если , (ортогональны);
г) Ширина доверительного интервала равна бесконечности, если:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели