Доверительный интервал, доверительная вероятность

2.2 Генеральная совокупность.

Генеральной совокупностью называется множество всех возможных значений или реализаций исследуемой случайной величины при данном реальном комплексе условий.

Выборкой называют часть генеральной совокупности, отобранную для изучения.

Изучение всей генеральной совокупности во многих случаях либо невозможно, либо нецелесообразно в силу больших материа

льных затрат, поэтому на практике часто приходится иметь дело с выборками небольшого объема п<10-20. В этом случае используемый обычно метод построения интервальной оценки для генеральной средней (среднего арифметического генеральной совокупности) и генеральной доли (доли элементов, обладающих необходимым признаком) неприменим в силу двух обстоятельств:

1) необоснованным становится вывод о нормальном законе распределения выборочных средней и доли w, так как он основан на центральной предельной теореме при больших п;

2) необоснованной становится замена неизвестных генеральной дисперсии σ2 и доли р их точечными оценками (или ) или w, так как в силу закона больших чисел (состоятельности оценок) эта замена возможна лишь при больших п [4].

2.2.1 Построение доверительного интервала для генеральной

средней по малой выборке.

Задача построения доверительного интервала для генеральной средней может быть решена, если в генеральной совокупности рассматриваемый признак имеет нормальное распределение.

Теорема. Если признак (случайная величина) X имеет нормальный закон распределения с параметрами , x2 = 2, т.е. , то выборочная средняя при любом n имеет нормальный закон распределения

Если в случае больших выборок из любых генеральных совокупностей нормальность распределения обусловливалась суммированием большого числа одинаково распределенных случайных величин /n (теорема Ляпунова), то в случае малых выборок, полученных из нормальной генеральной совокупности, нормальность распределения вытекает из того, что распределение суммы (композиция) любого числа нормально распределенных случайных величин имеет нормальное распределение. Формулы числовых характеристик для получены ранее.

Таким образом, если бы была известна генеральная дисперсия , то доверительный интервал можно было бы построить аналогично изложенному выше и при малых n. Заметим, что в этом случае нормированное отклонение выборочной средней имеет стандартное нормальное распределение N(0; 1), т.е. нормальное распределение с математическим ожиданием, равным нулю, и дисперсией, равной единице.

Действительно, используя свойства математического ожидания и дисперсии, получим, что

,

.

Однако на практике почти всегда генеральная дисперсия (как и оцениваемая генеральная средняя ) неизвестна. Если заменить ее «наилучшей» оценкой по выборке, а именно «исправленной» выборочной дисперсией , то большой интерес представляет распределение выборочной характеристики (статистики) или с учетом малой выборки, распределение статистики .

Представим статистику t в виде:

. (8)

Числитель выражения (8) имеет стандартное нормальное распределение N(0; 1). Можно показать, что случайная величина имеет -распределение с ν = n - 1 степенями свободы. Следовательно, статистика t имеет t-распределение Стьюдента с ν=п - 1 степенями свободы. Указанное распределение не зависит от неизвестных параметров распределения случайной величины X, а зависит лишь от числа ν, называемого числом степеней свободы.

Выше отмечено, что t-распределение Стьюдента напоминает нормальное распределение, и действительно при ν →∞ как угодно близко приближается к нему.

Число степеней свободы к определяется как общее число n наблюдений (вариантов) случайной величины X минус число уравнений l, связывающих эти наблюдения, т.е. ν = п - l.

Так, например, для распределения статистики число степеней свободы ν = п - 1, ибо одна степень свободы «теряется» при определении выборочной средней (и наблюдений связаны одним уравнением ).

3ная t-распределение Стьюдента, можно найти такое критическое значение что вероятность того, что статистика не превзойдет величину (по абсолютной величине), равна:

(9)

Функция , где – плотность вероятности t-распределения Стьюдента при числе степеней свободы ν табулирована. Эта функция аналогична функции Лапласа Ф(t), но в отличие от нее является функцией двух переменных — t и ν = п-1. При ν →∞ функция неограниченно приближается к функции Лапласа Ф(t)[4].

Формула доверительной вероятности для малой выборки может быть представлена в равносильном виде:

, (10)

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы