Анализ различных методов оценки статистических показателей при типическом отборе

интервальная оценка

,

где - выборочная стратифицированная доля, - предельная ошибка выборочной стратифицированной доли;

число единиц, обладающих определенным значением признакаght=32 src="images/referats/5501/image039.png">, находят по формулам:

точечная оценка

,

где - выборочная стратифицированная доля, N – численность генеральной совокупности;

интервальная оценка

,

где - выборочная стратифицированная доля, - предельная ошибка выборочной стратифицированной доли, N - численность генеральной совокупности;

отношения признаков в совокупности (отношение двух средних или суммарных значений признаков) находят по формулам:

точечная оценка

;

интервальная оценка

,

где рассчитывается по формуле:

,

где - предельная ошибка отношений двух средних величин.

Интервальное оценивание предполагает расчет предельных, а значит и средних ошибок выборки. Расчет ошибок выборки зависит от:

1) разновидностей типического отбора:

а) непропорциональный численности отдельных типов;

б) пропорциональный численности типов;

в) пропорциональный численности отдельных типов и вариации группировочного признака;

2) метода отбора:

а) повторный;

б) бесповторный.

Рассмотрим расчет средней ошибки репрезентативности при соответствующих разновидностях типического отбора.

Среднюю ошибку выборки при повторном методе находят по формулам:

а) для отбора непропорционального численности типов:

для средней количественного признака

= ,

где N – численность генеральной совокупности, - дисперсия i-той группы, Ni – численность признаков в соответствующем типе, ni – численность выборочной совокупности в i-том типе;

для доли (альтернативного признака)

= ,

где - выборочная доля в i-той страте, Ni – численность признаков в соответствующем типе, ni – численность выборочной совокупности в i-том типе;

б) для отбора пропорционального численности типов:

для средней количественного признака

= ,

где - средняя из групповых дисперсий, n – численность выборочной совокупности,

,

где - среднее квадратическое отклонение в i-той группе, ni – численность выборочной совокупности в i-том типе, n – численность выборочной совокупности;

для доли (альтернативного признака)

=,

где - доля единиц в совокупности, n – численность выборки;

в) для отбора пропорционального численности отдельных типов и вариации группировочного признака:

для средней количественного признака

= ,

где N – численность генеральной совокупности, - среднее квадратическое отклонение в i-той группе, Ni – численность признаков в соответствующем типе, n – численность выборки;

для доли (альтернативного признака)

=,

где N – численность генеральной совокупности, - выборочная доля в i-той страте, Ni – численность признаков в соответствующем типе, n – численность выборки;

среднюю ошибку выборки при бесповторном методе находят по формулам:

а) для отбора непропорционального численности типов:

для средней количественного признака

= ,

где N – численность генеральной совокупности, - дисперсия i-той группы, Ni – численность признаков в соответствующем типе, ni – численность выборочной совокупности в i-том типе;

для доли (альтернативного признака)

= ,

где N – численность генеральной совокупности, - выборочная доля в i-той страте, Ni – численность признаков в соответствующем типе, ni – численность выборочной совокупности в i-том типе;

б) для отбора пропорционального численности типов:

для средней количественного признака

= ,

где - средняя из групповых дисперсий, n – численность выборки, N – численность генеральной совокупности;

для доли (альтернативного признака)

= ,

где - доля единиц в совокупности, n – численность выборки, N – численность генеральной совокупности;

в) для отбора пропорционального численности отдельных типов и вариации группировочного признака:

для средней количественного признака

= ,

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы