Формирование понятия функции в курсе математики средней школы

Доказательство Так как функция y = f1 (x) – периодическая с периодом Т ¹ 0, то для любого x Î X выполняется равенство

f1 (x +Т) = f1 (x) (1)

Так как функция y = f2 (x) – периодическая с периодом Т ¹ 0, то для любого x Î X выполняется равенство

f2 (x +Т) = f2 (x) (2)

Рассмотрим функцию z (x) = f1 (x) ± f2 (x), заданную на множестве X. Тогда для любого

x Î X согласно равенствам (1) и (2) будем иметь

z (x +T) = f1 (x +T) ± f2 (x +Т) = f1 (x) ± f2 (x) = Z (x).

Последнее равенство доказывает периодичность функции z (x) представляющей собой сумму или разность двух периодических функций с одним и тем же периодом Т.

Рассмотрим функцию t (x) = f1 (x)×f2 (x), заданную на множестве Х. Тогда для любого x Î X согласно равенствам (1) и (2) будем иметь

t (x +T) = f1 (x +T) ×f2 (x +Т) = f1 (x) ×f2 (x) = t (x).

Данное равенство доказывает периодичность функции t(x) представляющей собой произведение двух периодических функций с одним и тем же периодом Т, причем число Т является периодом как функции t(x), так и функции z(x).

Замечание.Если число Т было наименьшим положительным периодом (т.е. основным периодом) двух заданных функций, то после их сложения или умножения Т может перестать быть наименьшим из положительных периодов.

Пример 5. Функция f1 (x) = 3 sin x + 2 имеет основной период 2p, функция f2 (x) = 2 – 3 sin x имеет основной период 2p, а их сумма

z (x ) = f1 (x) +f2 (x) = 3 sin x + 2 + 2 – 3 sin x = 4

наименьшего положительного периода не имеет, так как при любом действительном значении a ¹ 0 z(x+a) = z(x), т.е. любое действительное число является периодом функции z(x), а наименьшего положительного среди действительных чисел нет.

Пример 6. Функция j1(x) = sin x +1 и j2(x) = 1- sin x имеют наименьший положительный период 2p, а для произведения

t(x) = j1(x) × j2(x) = (sin x +1)(1- sin x) = 1- sin2x = cos2x =

наименьшим положительным периодом есть число p .

Определение Периоды функций Т1 и Т2 называются соизмеримыми, если существуют такие целые отличные от нуля числа m и n, что m×T1 = n×Т2.

Пример 7. Выясним, являются ли соизмеримыми периоды Т1 = и

Т2=

Решение. Данные периоды будут соизмеримыми, если уравнение ×m = ×n имеет решение на множестве Z \ {0}. Умножим обе части данного уравнения на 6 (наименьшее общее кратное чисел 3 и 2), получим равносильное уравнение 4m = 15n, откуда m = 15k, n = 4k, где k Î Z \ {0}. Например, при k = 1 получим

× 15 = ×4 = 10

Ответ: Периоды Т1 и Т2 соизмеримы.

Теорема 2. Если периодические функции y = f1(x) и y = f2(x), x Î X, имеют соизмеримые периоды Т1 и Т2 то они имеют общий период.

Доказательство. Так как периоды Т2 и Т2 соизмеримы, то существуют целые отличные от нуля числа m и n такие, что m ×T1 = n × T2 = T ¹ 0. Следовательно, Т – общий период функций y = f1(x) и y = f2 (x). Теорема доказана.

Замечание. По теореме 1 число Т будет также периодом функций

z (x)= f1(x) ± f2 (x), t(x) = f1(x) f2 (x).

Пример 8. Найти период функции

f(x) = sin2x + 3sin(3x-2) - cos(x +1).

Решение. Так как период синуса равен 2p, функция sin2x имеет период = p функция sin(3x-2) = sin(3x-2 + 2p) = 3sin3(x-+ ) и ее период равен . Аналогично, функция -cos(x +1) имеет период = p.

Для того, чтобы найти общий период функции, представим периоды

Т1 = p; Т2 =p и Т3 = p в другом виде, а именно, коэффициенты при p в полученных периодах приведем к общему знаменателю, получим

Т1 = p = 6×; Т2 = p = 4×и Т3 = p = ×p и найдем наименьшее общее кратное числителей этих коэффициентов 6, 4 и 15. Оно равно 60. Следовательно, число Т = 60×= 10p – основной период данной функции.

Пример 9. Найти период функции y = cos5x-sin2x.

Решение. Функция y = cos5x имеет период T1 = ; функция y = sin2x – период Т2 = = p. Представим периоды Т1 и Т2 в другом виде: Т1 = 2×; Т2 = 5×. Таким образом видно, что периоды Т1 и Т2 соизмеримы: 5Т1 = 2Т2, откуда 5× = 2×p = 2p. Следовательно, число 2p является периодом данной функции.

Пример 10. Найти основной период функции y = sin2x.

Решение. Понизим степень функции y = sin2x. Тогда y = =

-cos2x. Период этой функции равен периоду cos2x = p. Таким образом основной период данной функции равен p.

Замечание. Если Т1 и Т2 – основные периоды функций f1(x) и f2(x), то наименьшее положительное число Т, удовлетворяющее условиям:

Т = mT1 = nT2, где m, n Î Z \ {0}, не обязательно является основным периодом функций f1(x) ± f2(x) и f1(x) × f2(x).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы