Приложение определенного интеграла к решению задач практического содержания
Таким образом, L = dx.
Пример: Найти длину окружности радиуса R. (рис 3)[5]
Решение:
Найдем ¼ часть ее длины от точки (0;R) до точки (R;0). Так как y
= , ¼L = dx = R arcsin= R .
|
Значит L = 2R.
Полярные координаты
Пусть кривая AB задана уравнением в полярных координатах r = r(), . Предположим, что r() и r() непрерывны на отрезке [].
Если в равенствах x = r cos, y = r sin, связывающих полярные и декартовы координаты, параметром считать угол , то кривую AB можно задать параметрически
Тогда
Поэтому
= =
Применяя формулу L = , получаем
L =
Пример: Найти длину кардиоиды r = a(1 + cos).
[5]
|
Решение: Кардиоида r = a(1 + cos) симметрична относительно полярной оси. Найдем половину
(рис 4) длины кардиоиды:
½ L = = a = a = 2a cosd= 4a sin= 4a.
3.2.2 Вычисление объема тела
Вычисление объема тела по известным площадям параллельных сечений
Пусть требуется найти объем V тела (рис 5), причем известны площади сечений этого тела плоскостями, перпендикулярными некоторой оси, например оси Ox:S = S(x), a≤ x≤ b [5]
Применим схему II (метод дифференциала).
|
1. Через произвольную точку x [а; b] проведем плоскость П, перпендикулярную оси Ох. Обозначим через S(x) площадь сечения тела этой плоскостью; S(x) считаем известной и непрерывно изменяющейся при изменении x. Через v(x) обозначим объем части тела, лежащее левее плоскости П. Будем считать, что на отрезке [а; x] величина v есть функция от x, т. е. v = у(x) (v(a) = 0, v(b) = V).
2. Находим дифференциал dV функции v = v(x). Он представляет собой
“элементарный слой” тела, заключенный между параллельными плоскостями, пересекающими ось Ох в точках x и x + Δx, который приближенно может быть принят за цилиндр с основанием S(x) и высотой dx. Поэтому дифференциал объема dV = S(х) dх.
2. Находим искомую величину V путем интегрирования dА в пределах от a до b:
V = S(x) dx
Формула объема тела по площади параллельных сечений
Пример: Найти объем эллипсоида (рис 6)[5]
|
Решение: Рассекая эллипсоид плоскостью, параллельной плоскости OYZ и на расстоянии х от нее (-a≤ x≤ b.), получим эллипс
Площадь этого эллипса равна S(x) = bc(1 - ). Поэтому, по формуле имеем
V = bc(1 - )dx = abc.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах