Приложение определенного интеграла к решению задач практического содержания
Статическим моментом SХ системы материальных точек относительно оси Ох называется сумма произведений масс этих точек на их ординаты (т. е. на расстояния этих точек от оси Ох):
Аналогично определяется статистический момент Sэтой системы относительно оси Oy: S
= .
Если массы распределены непрерывным образом вдоль некоторой кривой, то для выражения статического момента понадобится интегрирование.
Пусть у =f/(х) (a ≤ х ≤ b) — это уравнение материальной кривой АВ. Будем считать ее однородной с постоянной линейной плотностью (= const).
Для произвольного х [а;b] на кривой АВ найдется точка с координатами (х; у). Выделим на кривой элементарный участок длины dl, содержащий точку (х;у). Тогда масса этого участка равна . Примем этот участок dl приближенно за точку, отстоящую от оси Ох на расстоянии у. Тогда дифференциал статического момента dS(“элементарный момент”) будет равен , т.е. .
Отсюда следует, что статический момент SХ кривой АВ относительно оси Ох равен
Аналогично находим S:
Статические моменты SХ и SУ кривой позволяют легко установить положение ее центра тяжести (центра масс).
Центром тяжести материальной плоской кривой у = f(х), х 6 [а; b] называется точка плоскости, обладающая следующим свойством: если в этой точке сосредоточить всю массу т заданной кривой, то статический момент этой точки относительно любой координатной оси будет равен статическому моменту всей кривой у = f(х) относительно той же оси. Обозначим через С(хс;ус) центр тяжести кривой АВ.
Из определения центра тяжести следуют равенства и или и . Отсюда ,
или
Пример. Найти центр тяжести однородной дуги окружности x+ y= R2, расположенной в первой координатной четверти (рис 16).[5]
|
.
Стало быть,
Так как данная дуга симметрична относительно биссектрисы первого координатного угла, то хс = ус =Итак, центр тяжести имеет координаты (;).
3.3.5 Вычисление статических моментов и координат центра тяжести плоской фигуры
Пусть дана материальная плоская фигура (пластинка), ограниченн кривой у = f(х) ≥ 0 и прямыми у = 0, х = а, х = b) (рис 17).
Будем считать, что поверхностная плотность пластинки постоянна (= const). Тогда масса всей пластинки равна т. е. . Выделим элементарный участок пластинки в виде бесконечно узкой вертикальной полосы и будем приближенно считать его прямоугольником.
Тогда масса его равна . Центр тяжести прямоугольника лежит на пересечении диагоналей прямоугольника. Эта точка отстоит от оси Ох на ½y, а от оси Оу на x (приближенно; точнее на расстоянии х+ ½Δx ). Тогда для элементарных статических моментов относительно осей Ох и Оу выполнены соотношения
и
Следовательно,
,
По аналогии с плоской кривой получаем, обозначив координаты центра тяжести плоской фигуры (пластинки) через С(x;y), что .
Отсюда
и
или
x,.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах