Приложение определенного интеграла к решению задач практического содержания
Решение: Работа, затрачиваемая на поднятие тела весом р на высоту h, равна р • Н. Но различные слои жидкости в резервуаре находятся на различных глубинах и высота поднятия (до края резервуара) различных слоев не одинакова.
Для решения поставленной задачи применим схему II (метод
дифференциала). Введем систему координат.
1. Работа, затрачиваемая на выкачивание из резервуара слоя жидкости толщиной х (0 ≤ х ≤ Н), есть функция от х, т. е. А = А(х), где (0 ≤ х ≤ Н)( A(0) = 0, A(H) = А0).
2. Находим главную часть приращения ΔA при изменении х на величину Δх = dx, т. е. находим дифференциал dА функции А(х).
Ввиду малости dх считаем, что “элементарный” слой жидкости находится на одной глубине х (от края резервуара). Тогда dА = dрх, где dр — вес этого слоя; он равен gАV, где g — ускорение свободногопадения, — плотность жидкости, dv — объем “элементарного” слоя жидкости (на рисунке он выделен), т. е. dр = g. Объем указанного слоя жидкости, очевидно, равен , где dx— высота цилиндра (слоя), — площадь его основания, т. е. dv = .
Таким образом, dр = . и
3) Интегрируя полученное равенство в пределах от х = 0 до х = Н, находим
A
3.3.2 Путь, пройденный телом
Пусть материальная точка перемещается по прямой с переменной скоростью v =v(t). Найдем путь S, пройденный ею за промежуток времени от tдо t2.
Решение: Из физического смысла производной известно, что при движении точки в одном направлении “скорость прямолинейного движения
равна производной от пути по времени”, т. е. v(t) = . Отсюда следует, что dS = v(t)dt. Интегрируя полученное равенство в пределах от tдо t,
получаем S =
Пример. Найти путь, пройденный телом за 4 секунды от начала движения, если скорость тела v(t) = 10t + 2 (м/с).[5]
Решение: Если v(t) = 10t + 2 (м/с), то путь, пройденный телом от начала движения (t = 0) до конца 4-й секунды, равен
S =
3.3.3 Давление жидкости на вертикальную пластинку
По закону Паскаля давление жидкости на горизонтальную пластину равно весу столба этой жидкости, имеющего основанием пластинку, а высотой — глубину ее погружения от свободной поверхности жидкости, т. е. Р =g, где g — ускорение свободного падения, — плотность жидкости, S — площадь пластинки, h — глубина ее погружения.
По этой формуле нельзя искать давление жидкости на вертикально погруженную пластинку, так как ее разные точки лежат на разных глубинах.
Пусть в жидкость погружена вертикально пластина, ограниченная линиями х = а, х = b, yи y. Для нахождения давления Р жидкости на эту пластину применим схему II (метод дифференциала).
1. Пусть часть искомой величины Р есть функция от х: р = р(х), т. е. р = р(х) — давление на часть пластины, соответствующее отрезку [а; b] значений переменной х, где х [a; b] (р(a) = 0, р(b) = Р).
|
Тогда по закону Паскаля dр =.
3. Интегрируя полученное равенство в пределах от х = а до х = b, получим
P = или P =
Пример. Определить величину давления воды на полукруг, вертикально погруженный в жидкость, если его радиус R, а центр О находится на свободной поверхности воды (рис 15).[5]
Решение: Воспользуемся полученной формулой для нахождения давления жидкости на вертикальную пластинку. В данном случае пластинка ограничена линиями у= -, y, x = 0, x = R.
P =
|
3.3.4 Вычисление статических моментов и координат центра тяжести плоской кривой
Пусть на плоскости Оху задана система материальных точек М(х;у), М2(х2;y), … , M(x;y) соответственное массами m,m, … , m„.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах