Приложение определенного интеграла к решению задач практического содержания

Підпис: Рис 13Решение: Работа, затрачиваемая на поднятие тела весом р на высоту h, равна р • Н. Но различные слои жидкости в резервуаре находятся на различных глубинах и высота поднятия (до края резервуара) различных слоев не одинакова.

Для решения поставленной задачи применим схему II (метод

дифференциала). Введем систему координат.

1. Работа, затрачиваемая на выкачивание из резер­вуара слоя жидкости толщиной х (0 ≤ х ≤ Н), есть функция от х, т. е. А = А(х), где (0 ≤ х ≤ Н)( A(0) = 0, A(H) = А0).

2. Находим главную часть приращения ΔA при из­менении х на величину Δх = dx, т. е. находим диффе­ренциал dА функции А(х).

Ввиду малости dх считаем, что “элементарный” слой жидкости находится на одной глубине х (от края резервуара). Тогда dА = dрх, где dр — вес этого слоя; он равен gАV, где g — ускорение свободногопадения, — плотность жидкости, dv — объем “элементарного” слоя жидкости (на рисунке он выделен), т. е. dр = g. Объем указанного слоя жидкости, очевидно, равен , где dx— высота цилиндра (слоя), — площадь его основания, т. е. dv = .

Таким образом, dр = . и

3) Интегрируя полученное равенство в пределах от х = 0 до х = Н, находим

A

3.3.2 Путь, пройденный телом

Пусть материальная точка перемещается по прямой с переменной ско­ростью v =v(t). Найдем путь S, пройденный ею за промежуток времени от tдо t2.

Решение: Из физического смысла производной известно, что при дви­жении точки в одном направлении “скорость прямолинейного движения

равна производной от пути по времени”, т. е. v(t) = . Отсюда следует, что dS = v(t)dt. Интегрируя полученное равенство в пределах от tдо t,

получаем S =

Пример. Найти путь, пройденный телом за 4 секунды от начала движения, если скорость тела v(t) = 10t + 2 (м/с).[5]

Решение: Если v(t) = 10t + 2 (м/с), то путь, пройденный телом от на­чала движения (t = 0) до конца 4-й секунды, равен

S =

3.3.3 Давление жидкости на вертикальную пластинку

По закону Паскаля давление жидкости на горизонтальную пластину равно весу столба этой жидкости, имеющего основанием пластинку, а вы­сотой — глубину ее погружения от свободной поверхности жидкости, т. е. Р =g, где g — ускорение свободного падения, — плотность жидкости, S — площадь пластинки, h — глубина ее погружения.

По этой формуле нельзя искать давление жидкости на вертикально погруженную пластинку, так как ее разные точки лежат на разных глу­бинах.

Пусть в жидкость погружена вертикально пластина, ограниченная ли­ниями х = а, х = b, yи y. Для нахождения давления Р жидкости на эту пластину применим схему II (метод дифференциала).

1. Пусть часть искомой величины Р есть функция от х: р = р(х), т. е. р = р(х) — да­вление на часть пластины, соответствующее от­резку [а; b] значений переменной х, где х [a; b] (р(a) = 0, р(b) = Р).

Рис 14

2. Дадим аргументу х приращение Δx = dх. Функция р(х) получит приращение Δр (на рисун­ке — полоска-слой толщины dх). Найдем диффе­ренциал dр этой функции. Ввиду малости dх бу­дем приближенно считать полоску прямоуголь­ником, все точки которого находятся на одной глубине х, т. е. пластинка эта — горизонталь­ная.

Тогда по закону Паскаля dр =.

3. Интегрируя полученное равенство в пределах от х = а до х = b, получим

P = или P =

Пример. Определить величину давле­ния воды на полукруг, вертикально погружен­ный в жидкость, если его радиус R, а центр О находится на свободной поверхности воды (рис 15).[5]

Решение: Воспользуемся полученной форму­лой для нахождения давления жидкости на вер­тикальную пластинку. В данном случае пластинка ограничена линиями у= -, y, x = 0, x = R.

P =

Рис 15

3.3.4 Вычисление статических моментов и координат центра тяжести плоской кривой

Пусть на плоскости Оху задана система материальных точек М), М2(х2;y), … , M(x;y) соответственное массами m,m, … , m„.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы