Приложение определенного интеграла к решению задач практического содержания
Если, наконец, кривая y=f(х) пересекает ось Ох, то сегмент [а;b] надо разбить на части, в пределах которых f(х) не меняет знака, и к каждой такой части применить ту из формул, которая ей соответствует.
r=white >
|
Решение. Пользуясь формулой , находим искомую площадь
S =
|
Решение. Разбиваем сегмент [0; ] на два сегмента [0; ] и [; 2]. На первом из них sinx ≥ 0, на втором — sinx ≤ 0. Следовательно, используя формулы
и , имеем, что искомая площадь
Полярные координаты.
Пусть требуется определить площадь сектора ОАВ, ограниченного лучами = , = и кривой АВ (рис 11), заданной в полярной системе координат уравнением r = r (), где r () — функция, непрерывная на сегменте [; ].
|
|
Тогда сумма - приближенно площадь сектора OAB. Отсюда:
Пример. Найти площадь плоской фигуры, ограниченной кардиоидой г = a(1+соs) (рис 12). [7]
Решение. Учитывая симметричность кривой относительно полярной оси, по формуле получаем:
3.3 Механические приложение определенного интеграла
3.3.1 Работа переменной силы
Пусть материальная точка М перемещается вдоль оси Ох под действием переменной силы F = F(х), направленной параллельно этой оси. Работа, произведенная силой при перемещении точки М из положения х = а в положение х = b (а <bЬ), находится по формуле
A =
Пример. Какую работу нужно затратить, чтобы растянуть пру-'—' жину на 0,05 м, если сила 100 Н растягивает пружину на 0,01 м?[5]
Решение: По закону Гука упругая сила, растягивающая пружину, пропорциональна этому растяжению х, т. е. F = kх, где k — коэффициент пропорциональности. Согласно условию задачи, сила F = 100 Н растягивает пружину на х = 0,01 м; следовательно, 100 = k 0,01, откуда k = 10000; следовательно, F =10000х.
Искомая работа на основании формулы A =
равна
A =
Пример. Найти работу, которую необходимо затратить, чтобы выкачать через край жидкость из вертикального цилиндрического резервуара высоты Н м и радиусом основания R м (рис 13).[5]
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах