Разработка и проектирование тормозной рычажной передачи 4-х осевого крытого вагона на тележках модели 18-100

Рис 3.4 Расчетная схема рычага т.ц. и эпюра изгибающего момента, сечения рычага тележки

Размеры горизонтального рычага тележки типа 18-100 крытого вагона:

а=260; б= 400 мм; d1= 40 мм; d2 = 45 мм; H*h =142*14 мм; R = 40 мм.

,

где: [sи] - допускаем

ые максимальные напряжения в рычаге при

изгибе - 145 МПа;

W-момент сопротивления поперечного сечения рычага;

Ми - изгибающий момент в опасном сечении рычага.

Для сечения А-А

В свою очередь момент сопротивления можно определить из выражения.

Поэтому:

После соответствующих преобразований получим уравнение следующего вида

По правилу Тартальи корень этого уравнения представляется выражением:

где: U и V - решения системы.

из таб. 6.2 выбираем следующие размеры сечений рычага: при d2 =45мм,

h = 120мм, t = 14мм;

Напряжения сжатия и среза определяются по формулам:

где: Р- усилие на проушину;

t – толщина проушины;

d1 – диаметр проушины;

h – высота сечения проушины по линии среза, принимается равной:

R – радиус наружного очертания проушины.

При расчете проушины напряжения изгиба и растяжения определяются как для криволинейного бруса с сосредоточенной нагрузкой. В зависимости от кривизны этого бруса распределение напряжений по сечению принимается либо по линейному либо по гиперболическому законам (при отношении среднего радиуса к высоте сечения проушины больше 5-ти рекомендуется принимать линейный закон распределения напряжений).

Для прямой проушины рычага максимальные растягивающие напряжения в сечении по отверстию определяются по формуле:

максимальное напряжения на внешнем контуре проушины в сечении, расположенном по линии действия сосредоточенной силы Р, находятся по формуле:

где: Ks1 и Ks2 - коэффициенты, определяемые в зависимости от отношения d1/2R=0,5. Ks1 =4; Ks2 =6

3.7 Расчет на прочность по допускаемым напряжениям затяжки горизонтальных рычагов

Рис 3.5 Затяжка горизонтальных рычагов.

Тяги и прямолинейные затяжки рычагов в расчетной схеме принимаются в виде стержня шарнирно опертого по концам и центрально растянутого или сжатого силами.

где: F – площадь поперечных сечений (без учета местных ослаблении).

F=h*t. при этом [sp]=145МПа.

t – ширина поперечного сечения; t=25 мм;

h – высота поперечного сечения; h=110 мм;

где е – эксцентриситет приложения усилия Р3, е =105мм.

3.8.Вычисление величины деформации элементов рычажной передачи при торможение вагона

Упругие деформации элементов рычажной передачи, работающих на растяжение или сжатие определим по формуле:

где: Р – сила действующая в рассматриваемом сечение, Н;

l – длинна рассматриваемых элементов, см;

F – площадь поперечного сечения, см;

Е – модуль упругости, Н/см.

В случае внутреннего растяжения (сжатия) формула принимает следующий вид:

где: е – эксцентриситет приложения силы;

I – момент инерции сечения относительно точки приложения силы.

Деформации рычагов рассчитываем по следующей формуле:

где: а и б – плечи рычагов, мм.

Деформация траверсы определяется по формуле:

где: c – плечо приложения силы Р, мм.

Деформация изгиба горизонтального рычага ТЦ:

Момент инерции определим по формуле:

3.9.ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ ВЫХОДА ШТОКА ТОРМОЗНОГО ЦИЛИНДРА ПРИ ТОРМОЖЕНИИ ВАГОНА

Рис. 3.6 Зависимость хода поршня от давления в Т.Ц.

3.9.1 РАСЧЕТ СВОБОДНОГО ХОДА ПОРШНЯ ЦИЛИНДРА ПРИ ТОРМОЖЕНИИ ВАГОНА

Определим влияние величины зазора ∆ между колодкой и колесом на выход штока LCB поршня ТЦ. Рассмотрим только головную кинематическую цепь ТРП. Ты­ловая кинематическая цепь передачи тормоза, расположенная на вагоне со стороны задней крышки ТЦ по всей структуре идентична головной и имеет обозначения соединений подвиж­ных звеньев 1 – 9.

Свободный ход поршня ТЦ найдем из условий перемеще­ния шарниров 1- 9 и 1’ – 9’ собирающих элементы рычажного механизма в единые кинематические цепи. Для этого восполь­зуемся подобием треугольников, образованных в структуре механизма изначальным и конечным местоположением рычагов передачи (рис. 3.7.)

Рис. 3.7.Свободный ход поршня Т.Ц. при торможении вагона за счет перемещения колодок до прилегания к колесам.

С учетом полученных результатов полную величину свободного хода поршня Т. Ц. можно выразить:

- зазор между колодкой и колесом; = 8мм.

для чугунных колодок:

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы