Энергосбережение на современном этапе

В структурной схеме ЭПРА для ГРЛ ВД имеются схожие элементы, аналогичные для ЭПРА ЛЛ, а также свои отличительные особенности (рис. 28):

1. Входной фильтр, кроме подавления радиопомех, генерируемых ЭПРА, служит для сглаживания ВЧ пульсаций потребляемого тока, возникающих при работе схемы активной коррекции формы потребляемого тока.

2. Выпрямление напряжения сети происходит в мостовом вып

рямителе.

Рис.28. Структурная блок-схема электронного ПРА для ламп высокого давления

3. Схема активной коррекции формы тока решает одну из актуальных задач силовой электроники – обеспечение электромагнитной совместимости преобразователей с бестрансформаторным входным выпрямителем и емкостным фильтром с питающей сетью. Наличие выпрямителя с емкостным фильтром во входной цепи ЭПРА обусловливает низкий коэффициент мощности, не превышающий 0,5÷0,7 и большой уровень высших гармоник потребляемого из сети тока. Резкое увеличение количества ключевых источников вторичного электропитания в ЭПРА ужесточает требования по электромагнитной совместимости их с сетью и ограничивает уровни высших гармоник потребляемого из сети тока. В качестве устройств коррекции формы потребляемого тока используют: 1) пассивные LC – фильтры, недостатком которых являются плохие массогабаритные показатели; 2) активное формирование синусоидального тока, совпадающего по фазе с питающим напряжением, что является наилучшим решением по электромагнитной совместимости ключевых источников с сетью. Анализ различных схем активной коррекции (рис. 29, а-в) показывает, что наиболее подходящей для использования в составе ЭПРА для ламп ВД является схема повышающего преобразователя (рис.29, в), которая обладает следующими достоинствами: 1) силовой транзистор имеет соединение истока (эмиттера) с общим проводом, чем облегчается схема формирования сигнала управления; 2) наличие реакторов в последовательной ветви обеспечивает фильтрацию ВЧ составляющих и сводит задачу коррекции коэффициента мощности к формированию модуля синусоидального тока через реактор; 3) максимальное напряжение на транзисторе равно выходному напряжению; 4) импульсный ток через силовой транзистор имеет меньшие значения, чем в других схемах; 5) схема может быть использована при мощностях до 2 кВт. При этом для нормальной работы схемы (рис. 29, в) необходимо, чтобы выходное напряжение превышало амплитудное значение сетевого напряжения. Работу в режиме пуска и спадов выходного напряжения, а также быстрый подзаряд емкости фильтра Сф обеспечивает диод VD 2. Законы управления силовым транзистором в схемах активной коррекции формы потребляемого тока достаточно сложны. Как правило, для этой цели используется следящая широтно-импульсная модуляция с постоянным или адаптивным гистерезисом. В качестве задания используется сигнал, пропорциональный напряжению сети. Ток, потребляемый схемой коррекции, сравнивается с заданием при помощи компаратора, который и управляет силовым транзистором. В реальном случае сигнал задания является сложной функцией напряжения сети и выходного напряжения схемы, благодаря чему обеспечивается еще и стабилизация Uвых при входных и выходных возмущениях. Наличие стабилизирующей выходное напряжение обратной связи необходимо еще и для обеспечения работоспособности схемы корректора в режиме холостого хода (в противном случае возникшие перенапряжения приведут к выходу элементов схемы из строя). Кроме того, в схему могут вводиться обратные связи, обеспечивающие работу дросселя в граничном режиме, защиту силового транзистора от токовых перегрузок. Ряд специализированных интегральных схем, выпускаемых ведущими фирмами, позволяют относительно просто обеспечивать управление силовым транзистором схемы коррекции. Постоянство выходного напряжения при изменении напряжения сети в широких пределах будет благоприятно сказываться на стабильности работы и срока службы ламп. Кроме того, отпадает и сама необходимость анализа влияния отклонений питающего напряжения на характеристики балластного контура с лампой, что упрощает проектирование ПРА.

Пассивный блок коррекции коэффициента мощности может выполняться в следующих вариантах: 1) три последовательно соединенных диода, подключенных к выходу выпрямителя, и два сглаживающих конденсатора, включенных последовательно со средним диодом, также к выходу выпрямителя; 2) три последовательно соединенных диода, подключенных параллельно выходу выпрямителя, и два накопительных конденсатора, «плюс» одного из которых подключен к аноду верхнего диода, а «минус» - к минусовому выводу выпрямителя, «плюс» второго конденсатора связан с плюсовым выводом выпрямителя, а «минус» с катодом нижнего диода, между катодом нижнего диода и анодом среднего диода включен резистор.

4. Высокочастотный инвертор. Выбор схемы инвертора зависит от конкретного типа ГРЛ ВД. Так, например, для ртутно-кварцевых ламп ДРТ и ДРЛ, имеющих невысокие значения напряжения зажигания и горения, использование традиционной (для ЛЛ) полумостовой схемы (рис. 30, а) является приемлемым (рис. 31). Высокие напряжения зажигания для ламп МГЛ и ДНаТ обусловливают преимущество мостовой схемы инвертора (рис. 30, б) с вдвое большим выходным напряжением. Требуемое напряжение холостого хода при этом можно получить при в 2,42 раза меньшем пусковом токе, что положительно скажется на надежности и экономичности ПРА. Кроме того, в пользу мостовой схемы для ламп средней и большой мощности говорит и рост напряжения на лампах в течение срока службы. Фактором, до настоящего времени сдерживающим разработку ЭПРА для ЛВД, являлось отсутствие подходящей элементной базы для ВЧ инвертора таких ПРА. Появление на рынке силовой электроники мощных МДП- и IGBT-транзисторов и модулей на их основе [29] открывает возможности для разработки экономичных и надежных схем питания ЛВД. Формирование оптимального сигнала управления силовыми транзисторами требует использования внешнего возбуждения (в отличие от простых автоколебательных систем ЭПРА - ЛЛ), что неизбежно приводит к усложнению схем.

Имеются сообщения о повышении энергоэкономичности ламп при использовании тока определенной формы, например в ЭПРА (заявка 4439812 ФРГ, НО5В 41/36, опубл. 9.05.1996; заявка 4439885 ФРГ, НО5В 41/29, опубл. 8.11.1996) для питания ГРЛ предлагается использовать ток прямоугольной формы с регулируемой амплитудой, при этом лампа подключается к источнику постоянного тока и ПРА сдержит повышающий преобразователь постоянного напряжения - в постоянное, а также мостовой коммутатор и блок управления. Прямоугольная форма тока и напряжения обеспечивает работу лампы без токовых пауз и, одновременно реализует преимущества работы на постоянном токе и устраняет недостатки, связанные с катафорезом.

5. Система управления вырабатывает управляющие сигналы для ВЧ инвертора. Рабочая частота схемы выбирается в пределах «окон», свободных от акустических резонансов. Кроме того, на выбор рабочего диапазона частот накладывает ограничения элементная база ВЧ инвертора (транзисторы, диоды) и материал магнитного сердечника балластного дросселя. Эти ограничения не позволяют, при использовании для магнитопроводов ферритов широкого применения, поднять рабочую частоту выше 50 ÷ 60 кГц. Реализовать обратные связи, ограничивающие мощность лампы на допустимом уровне, можно следующими путями: частотной модуляцией; широтно-импульсной модуляцией; регулированием напряжения питания инвертора. В случае использования частотной модуляции увеличение мощности лампы приводит к увеличению рабочей частоты ЭПРА, росту сопротивления индуктивного балласта и снижению мощности до заданного уровня. Достоинством широтно-импульсной модуляции является постоянство рабочей частоты ЭПРА, что облегчает ее выбор в пределах свободных от акустических резонансов частотных «окон», но, одновременно, усложняет систему управления инвертором. Регулирование напряжения питания инвертора можно осуществить улучшить введением в схему активной коррекции формы потребляемого тока путем дополнительной цепи обратной связи, но для обеспечения широкого диапазона регулирования элементы схемы ЭПРА должны работать при повышенных напряжениях (400 ÷ 450 В). Схема системы управления может предусматривать возможность регулирования светового потока лампы. Перспективным представляется и использование для всех перечисленных целей микроконтроллеров, что позволит управлять лампой по более сложным алгоритмам, учитывающих все многообразие реальных эксплуатационных условий. В отдельную группу можно выделить ЭПРА, построенные по принципу совмещения в одном узле функций инвертора, создающего ВЧ напряжение питания лампы, и функции активной коррекции формы потребляемого из сети тока, такие аппараты применяют для ламп небольшой мощности.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы