Электричество и магнетизм

Контрольные вопросы

1. Из каких блоков состоит электронный осциллограф? Каково назначение каждого блока?

2. От каких параметров зависит чувствительность ЭЛТ?

3. Как экспериментально определяется чувствительность осциллографа?

4. При каких условиях получают фигуры Лиссажу?

5. Какие условия должны выполняться, чтобы осциллограмма на экране ЭЛТ была неподвижна?

Ли

тература, рекомендуемая к лабораторной работе:

1. Калашников С.Г. Электричество. – М.: Наука, 1977.

2. Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

3. Иродов И.Е. Электромагнетизм. Основные законы. –М.- С.-П.: Физматлит Невский диалект, 2001

4. Рублев Ю.В., Куценко А.Н., Кортнев А.В. Практикум по электричеству. – М.: Высшая школа, 1971.

5. Кортнев А.В., Рублев Ю.В., Куценко А.Н Практикум по физике. – М.: Высшая школа, 1965.

ЛАБОРАТОРНАЯ РАБОТА №3

ИЗУЧЕНИЕ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

Цель работы:

Ознакомиться с методом моделирования электростатических полей и экспериментально построить картину электроста­тического поля с помощью кривых равного потенциала и силовых линий.

Идея эксперимента

При конструировании электронных ламп, конденсаторов, элек­тронных линз и других устройств часто требуется знать распреде­ление электрического поля в пространстве, заключённом между эле­ктродами сложной формы. Наглядное представление о характере поля создаётся тогда, когда его напряжённость и потенциал известны во всём пространстве. Так как электроизмерительные приборы (элект­рометры, вольтметры) предназначены для измерения потенциалов, и, кроме того, расчёт скалярной величины произвести легче, чем векторной, то экспериментально обычно изучается распределение в пространстве потенциала. Система эквипотенциальных поверхностей полностью описывает конфигурацию электростатического поля, так как линии напряжённости всегда ортогональны к ним.

Обычно электростатическое поле исследуется путем перемещения в нем измерительных зондов, что легко может быть выполнено в жидких и газообразных диэлектрических средах. Однако электростатические измерения сопряжены с определенными трудностями, поскольку реальные диэлектрические среды обладают электропроводностью, зависящей от внешних условий (температуры, влажности и т.д.) Выход может быть найден в замене электростатического поля неподвижных зарядов полем постоянного электрического тока при условии, что потенциалы электродов (источников поля) поддерживаются постоянными, а электропроводность среды значительно меньше электропроводности электродов.

Теоретическая часть

Всякий неподвижный электрический заряд создает в окружающем пространстве электростатическое поле, которое обнаруживается при внесении пробных электрических зарядов в любую точку поля (подразумевается, что пробные заряды не искажают поля). Силовой характеристикой поля является его напряженность Е. Напряженность Е поля численно равна силе, с которой поле действует на единицу положительного заряда, помещенного в данную точку поля:

Е= F/q,

где q – величина пробного положительного заряда. Напряженность – векторная величина, совпадающая по направлению с силой.

Графически поле принято изображать с помощью силовых линий. Линия, касательная к которой в каждой точке совпадает по направлению с вектором напряженности электростатического поля, называется силовой линией. Следовательно, силовая линия определяет в каждой точке, через которую она проходит, направление силы, действующий на положительный заряд, помещенный в данную точку поля. Густота силовых линий характеризует численное значение напряженности. Через единичную площадку, перпендикулярную силовым линиям однородного поля, принято проводить число линий, равное Е.

Энергетической характеристикой поля является потенциал. Он измеряется работой, совершаемой силами поля при перемещении единичного положительного заряда из данной точки поля в бесконечность:

φ = A/q.

Потенциал электростатического поля является функцией координат. Можно выделить совокупность точек, для которых потенциал будет одним и тем же. Для поля, создаваемого точечным зарядом, такие совокупности точек будут образовывать концентрические сферические поверхности. Геометрическое место точек равного потенциала носит название эквипотенциальной поверхности. Любая линия на эквипотенциальной поверхности также эквипотенциальна.

Рассмотрим две бесконечно близкие эквипотенциальные поверхности φ и φ+dφ (рис.1). Вектор напряженности E направлен по нормали n к эквипотенциальной поверхности φ и пересекает эквипотенциальные поверхности в точках a и b.

Расстояние ab является кратчайшим от точки b до второй эквипотенциальной поверхности. При перемещении единичного положительного заряда из точки а в b совершается работа dA, численно равная

dA= Еdr.

Выражая ту же работу через разность потенциалов, получим:

dA=φ-(φ+d φ) = - dφ.

Сравнивая полученные выражения, найдем

Е= - dφ/dr.

Величина dφ/dr характеризует быстроту изменения потенциала в направлении нормали n и называется градиентом потенциала. Градиент потенциала есть величина векторная и обычно обозначается grad

E= - grad φ.

Поля, для которых выполняется это соотношение, называются потенциальными или консервативными. Работа сил такого поля не зависит от формы пути перехода, а зависит от положения начальной и конечной точек.

Экспериментальная установка

Установка для изучения картины электростатического поля состоит из ванны, сделанной из ма­териала с хорошими электроизолирующими свойствами, наполненной электролитом, проводимость которого мала, и двух электродов произвольной формы. Изучению подлежит электростатическое поле, создаваемое этими электродами. Для определения потенциала в любой точке поля используется метод зонда.

Для измерений используется схема (рис.2). представляющая собой мост, питаемый переменным током, в котором реохорд заменяется сопротивлениями межэлектродных промежутков. Здесь Э1 и Э2 - электроды, устанавливаемые в ванне, a Z - зонд. В качестве индикатора в данной схеме используется электронная лампа бЕ5С. Для питания моста служит переменный ток, так как при работе с постоянным током происходит так называемая поляризация, в результате которой падение потенциала происходит в основном вблизи электродов, ток через электролит уменьшается, и распреде­ление потенциала между электродами искажается. Трансформатор Тр, питающий мост, помещён в одном корпусе с индикатором нуля (схема питания индикатора на рис. 2 не показана). На боковую панель ко­рпуса выведены клеммы 3 В и 3 В, позволяющие снимать напряжение 12 В, и клеммы для включения индикатора в диагональ моста, обо­значенные буквами С и Д. Напряжение подаётся в другую диагональ моста на делитель, представляющий собой два последовательно соединённых магазина сопротивлений R1 и R2 . Изменяя величины сопротивлений R1 и R2, можно получить различные значения потенциала средней точки делителя напряжения, соединённой с С. Если зонд Z находится в такой точке поля, потенциал которой ра­вен потенциалу точки С делителя, то напряжение, подаваемое на управляющую сетку лампы-индикатора, будет равно нулю. В этот момент на светящемся экране индикаторной лампы тёмный сектор будет иметь наибольшую величину. Геометрическое место всех точек поля, для которых потенциал зонда будет равен заданному потенциалу при данных величинах R1 и R2, образует эквипотенциальную поверхность в исследуемом поле.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы