Электричество и магнетизм
29. Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.
30. Физический пракимкум. Электричество. Под редакцией В.И. Ивероновой. – М.: Наука, 1968.
31. Кортнев А.В., Рублев Ю.В., Куценко А.Н Практикум по физике. – М.: Высшая школа, 1965.
32. Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.
ЛАБОРАТОРНАЯ
РАБОТА № 15
ИЗУЧЕНИЕ ЗАТУХАЮЩИХ КОЛЕБАНИЙ
Цель работы:
Получить и наблюдать с помощью осциллографа затухающие электромагнитные колебания, определить логарифмический декремент затухания и его зависимость от параметров колебательного контура.
Идея эксперимента
Для возбуждения колебаний в контуре используется метод электрического удара: в цепь колебательного контура на конденсатор подаётся короткий электрический импульс, он заряжает конденсатор, и в цепи возникают затухающие колебания. В качестве источника электрических импульсов используется пилообразное напряжение генератора развёртки осциллографа. Для получения на экране осциллографа кривой U(t), можно воспользоваться схемой на рис. 1. На пластины осциллографа подается сигнал U пропорциональный току в контуре. Реле К 1-2 попеременно подключает конденсатор то к источнику импульсов, то к колебательному контуру, поэтому на экране осциллографа видна устойчивая картина (рис. 2). При этом условие синхронизации двух процессов - развёртки и затухающего колебания - выполняется автоматически, так как частота следования импульсов связана с частотой развёртки.
Теоретическая часть
Реальный колебательный контур
Замкнутая цепь, состоящая из катушки индуктивности и ёмкости, образует колебательный контур. Реальный колебательный контур обладает сопротивлением. Колебания в контуре можно вызвать, сообщив обкладкам конденсатора некоторый начальный заряд, либо возбудив в индуктивности ток, например, путём выключения внешнего магнитного поля, пронизывающего витки катушки.
Рассмотрим цепь, изображённую на рис.1. Если зарядить конденсатор от источника тока ε (ключ К в положении I), а затем замкнуть конденсатор на
|
|
электрического поля будет убывать, но зато возникает всё возрастающая энергия магнитного поля, обусловленного током, текущим через индуктивность. В катушке возникает э.д.с. самоиндукции, направленная так, чтобы поддержать ток. Поэтому в момент, когда напряжение на конденсаторе обратится в нуль, ток достигнет наибольшего значения.
Далее ток течёт за счёт э.д.с. самоиндукции и перезаряжает конденсатор, но уже до меньшего напряжения, так как часть энергии выделяется в виде джоулева тепла на сопротивлении R Затем те же процессы протекают в обратном направлении, после чего система приходит в исходное состояние.
Таким образом, в колебательном контуре периодически изменяются (колеблются) заряд на обкладках конденсатора, напряжение на конденсаторе и сила тока, текущего через индуктивность. Колебания сопровождаются взаимными превращениями энергии электрического и магнитного полей.
На основании закона Ома
. , (1)
где U - напряжение на конденсаторе, εi - э.д.с. самоиндукции.
; , (2)
так как q=UC. Знак "минус" указывает, что положительным считается то направление тока, которое соответствует убыли заряда на конденсаторе. Из формул (2) находим:
. (3)
Из соотношений (I), (2) и (3) получается дифференциальное уравнение затухающих колебаний:
. (4)
Введём обозначения: ω0 = (1/LC)1/2 - циклическая частота собственных колебаний контура без затухания, β= R/2L коэффициент затухания. Тогда уравнение (4) можно записать в виде:
. (5)
Решением этого уравнения будет выражение:
(б)
где (7)
циклическая частота свободных колебаний контура. Из уравнения (6) следует, что напряжение на конденсаторе со временем изменяется по гармоническому закону. Амплитуда колебаний убывает со временем по экспоненциальному закону. Вид затухающих колебаний представлен на рис. 2. Период колебаний выражается формулой:
. (8)
Если R достаточно мало по сравнению с L , то членом R2/4L2 можно пренебречь, и (8) переходит в формулу Томсона:
. (9)
Для характеристики затухания колебаний служит логарифмический декремент затухания – натуральный логарифм отношения двух амплитуд, отстоящих друг от друга по времени на один период.
, (10)
При сопротивлении , когда выражение (8) обращается в бесконечность, колебания в контуре не возникают, а процесс будет называться апериодическим.
Экспериментальная установка
Схема экспериментальной установки изображена на рис. 3. Емкость С,
индуктивность L и сопротивление R образуют колебательный контур. Колебания в контуре наблюдаются с помощью осциллографа. Для возбуждения колебаний служит генератор импульсов, присоединенный к контуру через конденсатор C1.
Конденсатор контура получает некоторый начальный заряд. В промежутках между импульсами в контуре совершаются свободные колебания, описываемые уравнением (5). Затухание колебаний определяется потерями энергии в катушке индуктивности L и сопротивлении R
Проведение эксперимента.
Изучение зависимости логарифмического декремента затухания от ёмкости
1. Собрать цепь по схеме (рис. 3), включив конденсатор электроёмкостью С= 13600 пФ.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода