Основные понятия и методы экономико-математического моделирования
Второй этап. Строится исходная симплекс-таблица и отыскивается некоторое начальное базисное решение. Множество переменных, образующих единичную подматрицу, принимается за начальное базисное решение. Значения этих переменных равны свободным членам. Все остальные внебазисные переменные равны нулю.
Третий этап. Проверка базисного решения на оптимальность осуществляется при помощи
специальных оценок коэффициентов целевой функции. Если все оценки коэффициентов целевой функции отрицательны или равны нулю, то имеющееся базисное решение – оптимальное. Если хотя бы одна оценка коэффициента целевой функции больше нуля, то имеющееся базисное решение не является оптимальным и должно быть улучшено.
Четвертый этап. Переход к новому базисному решению. Очевидно, что в оптимальный план должна быть введена такая переменная, которая в наибольшей степени увеличивает целевую функцию. При решении задач на максимум прибыли в оптимальный план вводится продукция, производство которой наиболее выгодно. Это определяется по максимальному положительному значению оценки коэффициента целевой функции.
Столбец симплексной таблицы с этим номером на данной итерации называется генеральным столбцом.
Далее, если хотя бы один элемент генерального столбца аij0 строго положителен, то отыскивается генеральная строка (в противном случае задача не имеет оптимального решения).
Для отыскания генеральной строки все свободные члены (ресурсы) делятся на соответствующие элементы генерального столбца (норма расхода ресурса на единицу изделия). Из полученных результатов выбирается наименьший. Соответствующая ему строка на данной итерации называется генеральной. Она соответствует ресурсу, который лимитирует производство на данной итерации.
Элемент симплексной таблицы, находящийся на пересечении генеральных столбца и строки, называется генеральным элементом.
Затем все элементы генеральной строки (включая свободный член), делятся на генеральный элемент. В результате этой операции генеральный элемент становится равным единице. Далее необходимо, чтобы все другие элементы генерального столбца стали бы равны нулю, т.е. генеральный столбец должен стать единичным. Все строки (кроме генеральной) преобразуются следующим образом. Полученные элементы новой строки умножаются на соответствующий элемент генерального столбца и полученное произведение вычитается из элементов старой строки.
Значения новых базисных переменных получим в соответствующих ячейках столбца свободных членов.
Пятый этап. Полученное базисное решение проверяется на оптимальность (см. третий этап). Если оно оптимально, то вычисления прекращаются. В противном случае необходимо найти новое базисное решение (четвертый этап) и т. д.
Пример решения оптимизационных задач линейного программирования симплексным методом
Пусть необходимо найти оптимальный план производства двух видов продукции (х1 и х2).
Исходные данные:
Вид продукции | Норма расхода ресурса на единицу прибыли | Прибыль на единицу изделия | |
А | В | ||
1 | 5 | 8 | 7 |
2 | 20 | 4 | 3 |
Объем ресурса | 20 | 36 |
1. Построим оптимизационную модель
– ограничение по ресурсу А;
– ограничение по ресурсу В.
2. Приведем задачу к приведенной канонической форме. Для этого достаточно ввести дополнительные переменные Х3 и Х4. В результате неравенства преобразуются в строгие равенства.
Построим исходную симплексную таблицу и найдем начальное базисное решение. Им будут дополнительные переменные, т. к. им соответствует единичная подматрица.
x3=20 и x4=36
Базисные переменные | Свободные члены (план) | x1 | x2 | x3 | x4 |
x3 | 20 | 5 | 2 | 1 | 0 |
x4 | 36 | 8 | 4 | 0 | 1 |
Fj – Cj | 7 | 3 | 0 | 0 |
1-я итерация. Находим генеральный столбец и генеральную строку:
max (7,3) = 7
Генеральный элемент равняется 5.
Базисные переменные | Свободные члены (план) | x1 | x2 | x3 | x4 |
x1 | 4 | 1 | 0.4 | 0.2 | 0 |
x4 | 4 | 0 | 0.8 | -1.6 | 1 |
Fj – Cj | 28 | 0 | 0.2 | -1.4 | 0 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели