Оптимизационные модели принятия решений
, (2.7)
где на некоторые или на все переменные налагается условие неотрицательности.
Использование информационных технологий при решении задач нелинейной оптимизации
Процессор электронных таблиц Excel является мощным и достаточно эффективным средством решения задач нелинейной оптимизации. В качестве иллюстрации
возможностей данного программного продукта рассмотрим решение нескольких задач, непосредственно связанных с процессом принятия (выработки) решений.
Пример 5
Рассмотрим следующую задачу. Предприятие располагает ресурсами двух видов сырья и рабочей силы, необходимыми для производства двух видов продукции. Затраты ресурсов на изготовление одной тонны каждого продукта, прибыль, получаемая предприятием от реализации тонны продукта, а также запасы ресурсов приведены в следующей таблице:
Таблица 2.3 Параметры задачи
Ресурс |
Расход ресурса |
Запас ресурса | |
На продукт 1 |
На продукт 2 | ||
Сырье 1, т |
3 |
5 |
120 |
Сырье 2, т |
4 |
6 |
150 |
Трудозатраты, ч |
14 |
12 |
400 |
Прибыль единицы продукта, тыс. руб./т |
72 |
103 |
Стоимость одной тонны каждого вида сырья определяется следующими зависимостями:
тыс. руб. для сырья 1 и тыс. руб. для сырья 2
где - затраты сырья на производство продукции. Стоимость одного часа трудозатрат определяется зависимостью , где - затраты времени на производство продукции.
Вопросы
Сколько продукта 1 и 2 следует производить для того, чтобы обеспечить максимальную прибыль?
Какова максимальная прибыль?
Решение: Пусть и - объемы выпуска продукции 1 и 2 в тоннах. Тогда задача может быть описана в виде следующей модели нелинейного программирования
Проведем решение данной задачи в Excel. На начальном этапе подготовим форму для решения задачи на рабочем листе следующего вида
Рис. 2.6. Данные для решения примера 5
Отведем для искомых значений объемов выпуска продукции ячейки B8, C8, для расхода соответствующих ресурсов (включая трудозатраты) – ячейки B3, B4, B5. В данные ячейки необходимо ввести функции
=3*B8+5*C8
=4*B8+6*C8 и
=14*B8+12*C8 соответственно.
Численные значения ограничений по ресурсам внесем в ячейки C3, C4, C5. В ячейку E10 введем формулу для целевой функции
=11*B8+16*C8+0,1*B8^2+0,12*C8^2+0,22*B8*C8.
Решение задачи производится с помощью Поиска решения Excel. Изменяемыми ячейками будут, очевидно, ячейки B8, C8; целевая ячейка устанавливается равной максимальному значению; используются следующие ограничения: $B$3<=$C$3, $B$4<=$C$4, $B$5<=$C$5. Следует иметь в виду, что в связи с нелинейностью данной задачи необходимо в окне Параметры поиска решения отключить опцию Линейная модель (это замечание относится к решению всех задач, приведенных в данном разделе). В результате запуска Поиска решения получим ответ
и значение максимальной прибыли 507.407 тыс. руб.
Пример 6
Рассмотрим следующую задачу. Предприятие может выпускать два вида продукции. На ее изготовление требуются ресурсы трех видов (). С учетом брака расход ресурсов на единицу производимой продукции - го вида () определяется выражением , а прибыль в зависимости от объемов производства равна , где - искомый объем производства продукции - го вида; - норма расхода - го ресурса на производство единицы продукции - го вида; - коэффициент изменения расхода соответствующего ресурса с учетом выпуска бракованных изделий; - прибыль от единицы продукции - го вида; - коэффициент изменения прибыли, влияющий на объем производства продукции.
Требуется найти такие объемы производства продукции, при которых прибыль максимальна.
Значения параметров задачи приводятся в нижеследующей таблице.
Ресурс () |
Запас ресурса |
Норма расхода ресурсов на продукцию вида |
Коэффициент изменения норм расхода ресурсов на продукцию вида | ||
1 |
2 |
1 |
2 | ||
1 |
1350 |
15 |
18 |
0,1 |
0,05 |
2 |
1400 |
12 |
16 |
0,2 |
0,2 |
3 |
1580 |
17 |
14 |
0,1 |
0,15 |
Прибыль (ден. ед.) |
100 |
120 | |||
Коэффициент изменения прибыли |
-0,08 |
-0,1 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели