Оптимизационные модели принятия решений
Целевой функцией, подлежащей оптимизации, является функция
где - искомые распределения инвестиций по объектам.
Таким образом, по смыслу величина есть ожидаемый результат от осуществления вс
ех инвестиционных проектов. Ограничениями в данном случае являются следующие соотношения
означающие, что на каждом объекте может быть реализован лишь один проект, и
означающие, что должны быть реализованы все проекты. Необходимо распределить проекты по объектам таким образом, чтобы суммарная эффективность от реализации всех проектов была максимальной.
Решение
Введем данные на рабочий лист (Рис.2.5.).
В ячейку B17 введем формулу =СУММ(B12:B16) и скопируем эту формулу в диапазон C17:F17. Аналогично, введем формулу =СУММ(B12:F12) в ячейку G12 и скопируем ее в диапазон G13:G16. Введем в ячейку для целевой функции (I13) формулу
=СУММПРОИЗВ(B4:F8;B12:F16)
Рис. 2.5 Данные для решения примера 4
Для решения задачи с помощью Поиска решения необходимо ввести ограничения в соответствии с приведенным ниже рисунком.
Поиск решения дает ответ
(остальные ), .
Нелинейные модели оптимизации в управлении
В настоящем разделе мы кратко рассмотрим задачи нелинейной оптимизации (называемые иначе оптимизационными задачами нелинейного программирования), математические модели которых содержат нелинейные зависимости от переменных. Источники нелинейности в задачах подобного типа могут относиться, в частности, к одной из двух категорий:
· Реально существующие и эмпирически наблюдаемые нелинейные соотношения, например непропорциональные зависимости между объемом производства и затратами, между количеством используемого в производстве компонента и некоторыми показателями качества готовой продукции, между затратами сырья и физическими параметрами (давление, температура и т.п.) соответствующего производственного процесса, между выручкой и объемом реализации и т.п.
· Установленные (постулируемые) руководством правила поведения или задаваемые зависимости, например, правила расчета с потребителями энергии или других видов услуг, правила определения страховых уровней запаса продукции, гипотезы о характере вероятностного распределения рассматриваемых в модели случайных величин, различного рода договорные условия взаимодействия между партнерами по бизнесу и др.
В качестве примера можно рассмотреть формирование оптимальной производственной программы предприятия. По критерию затрат учитывается себестоимость единицы продукции, которая уменьшается при увеличении объема выпускаемой продукции, что приводит к нелинейному критерию эффективности. Нелинейные зависимости возникают также в ограничениях задачи при точном учете норм расхода ресурсов на единицу производимой продукции.
Вообще говоря, решение нелинейных задач по сложности значительно превосходит решение рассмотренных ранее задач линейной оптимизации. В связи с этим долгое время в практике экономического управления модели линейной оптимизации успешно применялись даже при наличии нелинейности. В одних случаях нелинейность была несущественна и ею можно было пренебречь, в других – проводилась линеаризация нелинейных соотношений или применялись специальные приемы, например строились, так называемые, аппроксимационные модели, благодаря чему достигалась требуемая адекватность. Тем не менее, часто встречаются задачи, для которых нелинейность является существенной и упомянутые выше методы аппроксимации неэффективны, в связи с чем, нелинейность необходимо учитывать в явном виде.
В отличие от задачи линейной оптимизации (линейного программирования), не существует одного или нескольких алгоритмов, эффективных для решения любых нелинейных задач. Какой-то алгоритм может быть эффективен при решении задач одного типа и неприемлемым для задач другого типа. В связи с этим разработаны алгоритмы для решения каждого класса (типа) задач. Следует иметь в виду, что даже программы, ориентированные на решение определенного класса задач, не гарантируют правильность решения любых задач этого класса и оптимальность решения следует проверять в каждом конкретном случае.
Перечислим некоторые наиболее употребительные методы решения задач нелинейной оптимизации (нелинейного программирования):
· Оптимизация нелинейной функции с ограничениями на неотрицательность значений переменных (наиболее широко используемыми моделями данного класса являются модели квадратичного программирования, в которых целевая функция является квадратичной функцией переменных ).
· Модели выпуклого программирования; в моделях данного класса целевая функция является вогнутой (или выпуклой), а функции-ограничения являются выпуклыми функциями. При данных условиях локальный максимум (или минимум) функции является также глобальным. При решении таких задач используется метод множителей Лагранжа, а также теорема Куна-Таккера.
· Сепарабельное программирование. В задачах данного класса целевая функция и функции-ограничения могут быть представлены в виде сумм отдельных компонент. Данные задачи могут быть сведены к задачам линейного программирования.
· Дробно-нелинейное программирование. В этих задачах производится максимизация (минимизация) целевой функции вида
· Если функции линейны (задача дробно-линейного программирования), то задача сводится к линейной.
· Невыпуклое программирование. Задачи данного типа принадлежат к наименее изученным и наиболее сложным задачам нелинейной оптимизации. В данном случае целевая функция и (или) функции-ограничения не выпуклы. Надежных методов решения таких задач в настоящее время не существует.
Мы ограничимся рассмотрением лишь наиболее простых задач нелинейной оптимизации, не требующих использования сложных аналитических выкладок и анализа, - задач, которые могут эффективно решаться на базе табличного процессора Excel.
Задача нелинейной оптимизации в общем случае состоит в отыскании такого вектора неизвестных
который обращал бы в максимум (минимум) функцию
(2.6)
и удовлетворял бы системе ограничений:
Другие рефераты на тему «Экономико-математическое моделирование»:
- Взаимозаменяемость продовольственных продуктов - масла животного и масла растительного. Их потребление
- Имитационная модель автоматизированного участка обработки деталей
- Модели прогнозирования на основе временных рядов
- Межотраслевой баланс
- Пакет программ Майкрософт, как эффективное средство эконометрического анализа
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели