Моделирование и прогнозирование цен на бензин 2007
Y = 43,76 + 0,001*X1 – 1,42*X2t-2 + 0,06*X4
Исследовав данную модель на адекватность при помощи коэффициента детерминации, критерия Фишера, критерия Стьюдента и проведения анализа остатков (см. Приложение 7), можно прийти к выводу, что поскольку общий и скорректированный коэффициенты детерминации достаточно близки к 1, то можно сделать вывод о достаточно сильном влиянии факторных п
ризнаков на результирующий показатель Y. Уравнение значимо по критерию Фишера. Рассмотрев критерий Стьюдента для коэффициентов регрессии β0 и β1 можно сделать вывод, что оба коэффициента также значимы. Выполняются 2 условия Гаусса-Маркова из 3. Таким образом, Таким образом, можно сказать, что линейная модель достаточно адекватна, хотя выполняются не все условия Гаусса-Маркова, однако прогнозирование по данной модели также представляется возможным.
Для того чтобы прогнозировать показатель с помощью регрессионной линейной модели, необходимо рассчитать факторы, влияющие на данный показатель, т.е. факторные переменные. Они рассчитываются так же, как и показатель Y, построением различных трендовых моделей: полинома, линейной, нелинейной моделей. Далее эти модели оцениваются с точки зрения адекватности, и выявляется наиболее подходящая для прогнозирования модель. Все получаемые модели и прогнозные значения факторных признаков представлены в Приложении 8.
При прогнозировании цен на бензин АИ-92 на следующие 4 периода, т.е. на апрель, май, июнь, июль 2007 года при помощи линейной регрессионной модели получены следующий данные:
Точечные прогнозы составляют 17,5777 руб. за литр в апреле, 13,6282 руб. за литр в мае, 13,2731 руб. за литр в июне и 17,607 руб. за литр в июле. Соответствующие интервальные прогнозные значения представлены следующими интервалами [16,73;18,42], [13,17;14,09], [12,796;13,75] и [12,399;13,41].
НЕЛИНЕЙНАЯ МОДЕЛЬ
Regression Summary for Dependent Variable: Y | ||||||
R= ,86159959 RI= ,74235385 Adjusted RI= ,69941283 | ||||||
F(3,18)=17,288 p<,00002 Std.Error of estimate: 1,0297 | ||||||
St. Err. |
St. Err. | |||||
BETA |
of BETA |
B |
of B |
t(35) |
p-level | |
Intercpt |
39,4 |
11,017 |
3,57764 |
0,002152 | ||
1/X1 |
-0,4881 |
0,134468 |
-15978,8 |
4402,448 |
-3,62953 |
0,001917 |
X3t-7**5 |
10,9096 |
4,750669 |
0,0 |
0,000 |
2,29644 |
0,033871 |
X3t-7**4 |
-10,4466 |
4,747561 |
0,0 |
0,000 |
-2,20041 |
0,041075 |
Y = 39,4 – 15978,8*1/X1 + 1,19628000342225*10-6 *X3t-7^5 -0,0000551697094847616* X3t-7^4
Исследовав данную модель на адекватность при помощи коэффициента детерминации, критерия Фишера, критерия Стьюдента и проведения анализа остатков (см. Приложение 9), можно прийти к выводу, что поскольку общий и скорректированный коэффициенты детерминации достаточно близки к 1, то можно сделать вывод о достаточно сильном влиянии факторных признаков на результирующий показатель Y. Уравнение значимо по критерию Фишера. Рассмотрев критерий Стьюдента для коэффициентов регрессии β0 и β1 можно сделать вывод, что оба коэффициента также значимы. Выполняются не все условия Гаусса-Маркова. Таким образом, нельзя сказать, что нелинейная регрессионная модель полностью адекватна, однако прогнозирование по данной модели также представляется возможным.
Для того чтобы прогнозировать показатель с помощью регрессионной нелинейной модели, также необходимо рассчитать факторные переменные. Их расчет и получаемые модели представлены в Приложении 8.
При прогнозировании цен на бензин АИ-92 на следующие 4 периода, т.е. на апрель, май, июнь, июль 2007 года при помощи нелинейной регрессионной модели получены следующий данные:
Точечные прогнозы составляют 17,581 руб. за литр в апреле, 16,827 руб. за литр в мае, 17,607 руб. за литр в июне и 17,318 руб. за литр в июле. Соответствующие интервальные прогнозные значения представлены следующими интервалами [16,48;18,69], [15,13;19,52], [15,798;19,42] и [15,058;19,58].
Окончательные данные по прогнозированию можно представить в виде следующих таблиц:
Точечные прогнозы:
Тип модели |
Т=40 |
Т=41 |
Т=42 |
Т=43 |
Трендовая |
19,50655 |
19, 69912 |
19, 8917 |
20,08427 |
Линейная регрессия |
17,5777 |
13,6282 |
13,2731 |
17,607 |
Нелинейная регрессия |
17,581 |
16,827 |
17,607 |
17,318 |
Интервальные прогнозы:
Тип модели |
Т=40 |
Т=41 |
Т=42 |
Т=43 |
Трендовая |
[19,07;19,94] |
[19,25;20,15] |
[19,43;20,36] |
[19,60; 20,57] |
Линейная регрессия |
[16,73;18,42] |
[13,17;14,09] |
[12,796;13,75] |
[12,399;13,41] |
Нелинейная регрессия |
[16,48;18,69] |
[15,13;19,52] |
[15,798;19,42] |
[15,058;19,58] |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели