Методы безусловной многомерной оптимизации
По данным таблицы 4.7 коэффициент детерминации составит:
Сравним коэффициенты детерминации по трем моделям
Таблица 4.8
Тип трендовой модели |
Уравнения зависимостей |
|
Линейная |
|
0,477 |
Логарифмическая |
|
0,682 |
Логическая |
|
0,028 |
Чем слабее линейная связь между X и Y, тем R2 ближе к нулю, и чем эта связь значительнее, тем ближе R2 к единице.
Вывод: Анализируя результаты представленные в таблице 4.8 можно прийти к выводу что из представленных трендовых моделей, логарифмическая модель является наиболее адекватной.
5 Стимулирование и мотивация как функции управления
1. Задача стимулирования для одноэлементной системы.
Руководитель поручает рабочему производство продукции, используя следующую систему стимулирования: , где α – ставка оплаты единицы произведенной агентом продукции. Цена, по которой центр продаёт продукцию, p=1000 руб. Затраты агента, выраженные в денежной форме: Определить параметр системы стимулирования α.
Решение:
Запишем целевую функцию центра:
(3.1.1)
и целевую функцию агента:
(3.1.2)
Задача стимулирования формулируется:
(3.1.3)
(3.1.4)
Данная задача решается в 2 этапа. На первом этапе из выражения (3.1.4) определяется реакция агента как аналитическая зависимость от параметра системы стимулирования центра α . На втором этапе полученная аналитическая зависимость подставляется в формулу (3.1.3), получается задача безусловной оптимизации. Решая эту задачу, определим параметр системы стимулирования α.
Первый этап. Найдем реакцию агента из решения оптимизационной задачи (3.1.4). Для этого продифференцируем выражение (3.1.4) по y и приравняем к нулю:
Решая уравнение, определим реакцию агента:
Второй этап. Подставим реакцию агента в целевую функцию (3.1.3):
Вычислим первую производную и приравняем к нулю:
Решая уравнение, определим параметр α:
Ответ: параметр системы стимулирования равен 500.
2. Задача стимулирования для многоэлементной системы со слабосвязанными агентами.
Руководитель поручает работу бригаде, состоящей из двух рабочих. Центр использует пропорциональную систему стимулирования: , где – ставка оплаты единицы произведенной i-м агентом продукции. Известна функция затрат каждого агента:
Рыночная цена, по которой продается продукция р=1000 руб., фонд заработной платы бригады R=20000 руб. Определить параметры системы стимулирования и .
Решение
Сформулируем задачу стимулирования:
(3.2.1)
(3.2.2)
(3.2.3)
(3.2.4)
Первый этап. Из выражения (3.2.2) и (3.2.3) определим реакцию агентов.
Для нахождения экстремума функции одной переменной продифференцируем функции и приравняем к нулю:
Из решения уравнений следует:
Второй этап. Подставив и в выражение для целевой функции центра (3.2.1) и ограничение (3.2.4), получим задачу на условный экстремум:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели