Методы безусловной многомерной оптимизации

Для ее решения применим метод множителей Лагранжа. Запишем функцию Лагранжа:

Найдём частные производные от функции Лагранжа по неизвестным ,и :(3.2.5)

(3.2.6)

(3.2.7)

Выразим из (3.2.5) и (3.2.6) неизвестные ,:

Получилось, что параметры функций стимулирования для обоих агентов одинаковы. Из ограничения (3.2.7) определяем параметр системы стимулирования:

Ответ: Параметры системы стимулирования и равны между собой и равны 30,98.

3. Задача стимулирования для многоэлементной системы с сильносвязанными агентами.

Руководитель (центр) поручает работу бригаде, состоящей из 2 рабочих. Рабочие (агенты) изготавливают однородную продукцию объёмом yi , которую центр продаёт по цене p=1500. Центр использует пропорциональную систему стимулирования

,

где – ставка оплаты единицы продукции.

Затраты агентов определяются соответственно:

,

.

Фонд заработной платы, которым располагает центр составляет R=37000 денежных единиц. Определить параметры системы стимулирования .

Решение

Запишем целевую функцию центра:

(3.3.1)

и целевые функции агентов:

(3.3.2)

(3.3.3)

Сформулируем задачу стимулирования:

(3.3.4)

(3.3.5)

(3.3.6)

Первый этап. Найдем реакцию первого агента из решения оптимизационной задачи. Для этого продифференцируем целевую функцию агента по и приравняем к нулю:

Решая уравнение, определим реакцию первого агента:

Аналогично найдём реакцию второго агента:

Решив систему уравнений:

относительно y1 и y2получим реакции агентов:

Второй этап. Подставим реакции агентов в целевую функцию центра:

Продифференцировав это выражение по , и приравняв нулю, получим систему уравнений:

Решив полученную систему уравнений, определим параметры системы

стимулирования и

Ответ: параметры системы стимулирования и равны 645,83 и 961,01 соответственно.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы