Основы теории вероятности

b) 4-м заказчикам (событие В);

c) 12-ти заказчикам (событие С);

d) 3-м или 4-м заказчикам (событие D).

Решение.

C=AB

, D=AB.

События А и В совместные

Задача №35. Рабочий обслуживает 2 станка. В течение 8-ми часов каждый из станков приостанавливается по разным причинам. Получасовые остановки равновероятны. Найти вероятность того, что в данный момент времени только 1 станок работает. Найти вероятность того, что работают оба станка.

Решение.

С={в данный момент работает только один станок};

D={в данный момент работают оба станка};

A1={работает первый станок};

A2={работает второй станок}.

Задача №36. В читальном зале 6 учебников по теории вероятностей (т.в.). Из них 3 – в переплете. Библиотекарь наудачу взял 2 учебника. Найти вероятность того, что оба учебника в переплете.

Решение. Пусть события:

A = {I-ый учебник в переплете}

B={II-ой учебник в переплете}

С={оба учебника в переплете}.

Тогда:

Иначе:

Задача №37. В ящике детали 3-х сортов: 5 – I-го сорта, 4 – II-го, 3 – III-го. Из ящика наудачу извлекается 1 деталь и не возвращается в ящик. Найти вероятность того, что при первом испытании появится деталь I-го сорта (событие А), при втором испытании – II-го сорта (событие В), при третьем – третьего сорта (событие С).

Решение.

(всего деталей 12)

Задача №38. Вероятность попадания в 1-ю мишень (событие А) для данного стрелка равно 2/3. Если стрелок попал в первый раз, то он получает право на второй выстрел по другой мишени. Вероятность поражения обеих мишеней при 2-х выстрелах равна 0,5. Найти вероятность поражения второй мишени.

Решение. Пусть:

А={поражение 1-й мишени};

В={поражение 2-й мишени};

С={поражение обеих мишеней}.

, но т.к. А и В – события зависимые, то:

По условию,

Задача №39. 4% всей продукции – брак. 75% небракованных изделий удовлетворяют требованиям первого сорта. Найти вероятность того, что выбранное изделие первого сорта.

Решение.

Пусть:

A={изделие первого сорта};

В={изделие небракованное};

Тогда:

Задача №40. Абонент набирает наугад последнюю цифру телефона. Определите вероятность того, что:

a) В1 ={придется звонить не более 3-x раз};

b) В2 ={то же, но при условии, что неизвестная цифра нечётная}.

Решение. А1 ={в 1 раз набрал нужную цифру};

А2 ={во 2-й раз набрал нужную цифру};

А3 ={в 3-й раз набрал нужную цифру}.

Вероятность того, что за 3 раза он не набрал нужную цифру, равна:

Вероятность того, что в течение этих 3-х раз набрал хотя бы один раз нужную цифру, равна:

При условии, что набираемая цифра нечётная, имеем:

Задача №41. В лотерее имеются 10 билетов, из них 5 билетов стоимостью по 1 грн, 3 билета – по 3 грн, 2 билета – по 5 грн. Наудачу берут 3 билета. Найти вероятность того, что хотя бы 2 из этих билетов имеют одинаковую стоимость.

Решение. Всего способов выбрать 3 билета из 10-ти

.

Обозначим A={все 3 билета разные}.

Тогда:

Событие {хотя бы 2 билета одинаковой стоимости} является противоположным событию А, поэтому:

Задача №42. Спортсмены на соревнованиях делают 1 упражнение с 3-х попыток. Вероятность успешного выполнения 1-й попытки равна 0,8. Вероятность успешного выполнения 2-й попытки равна 0,7. Вероятность успешного выполнения 3-й попытки равна 0,4. Найти вероятность того, что спортсмен успешно выполнить это упражнение (событие А).

Решение.

А1 = {успех в 1-й попытке};

А2 = {успех во 2-й попытке};

А3 = {успех в 3-й попытке}.

Иначе:

Задача №43. 68% мужчин, достигших 60-летия, достигают и 70-летия. Найти вероятность того, что 60-летний мужчина не достигнет своего 70-летия.

Решение. Пусть: событие А={60-летний мужчина достигнет своего 70- летия}, тогда: {60-летний мужчина не достигнет своего 70-летия}.

Р()Р(А)==0,32.

Задача №44. В лотерее n билетов, из которых m – выигрышные. Вы приобрели k билетов. Найти вероятность того, что:

а) среди k билетов ровно l выигрышные (событие А);

б) среди k билетов хотя бы 1 выигрышный (событие В).

Решение.

а)

б) {среди k билетов ни одного выигрышного}

вероятность того, что среди k билетов хотя бы один выигрышный, равна:

Задача №45. В некотором обществе 70% людей – курят, 40% – с больными лёгкими, 25% – и курят, и болеют. Найти вероятность того, что наудачу взятый человек из этого общества:

a) не курит, но с больными лёгкими;

b) курит, но не болеет;

c) не курит и не болеет;

d) курит и болеет;

e) или курит, или болеет.

Решение.

Пусть А={человек курит};

В={человек с больными лёгкими}.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы