Основы теории вероятности

Множество возможных значений такой величины бесконечно.

Примером таких величин являются: величина ошибки при измерении расстояний, веса и др.; время бессбойной работы прибора, размеры детали, рост человека при обследовании определённой группы людей и др.

Закон распределения непрерывной с.в. имеет две формы:

интегральная функция распределения F(x) и дифференциальная функция распредел

ения f(x).

§ Как и в случае с дискретной с.в., интегральная функция распределения F(x) имеет вид:

F(x)=P(X<x) (5.12)

Но в отличие от ступенчатой линии для F(x) в случае с дискретной с.в. для непрерывной с.в. имеем непрерывную кривую для F(x).

Свойства F(x):

1) 0F(x)1;

2) если >, то F()F();

3) P(a<X<b)=F(b)-F(a); (5.13)

4) P(X=)=0;

5) если Х(a,b), то ;

6) .

§ Дифференциальная функция распределения f(x) (плотность вероятности) есть производная от интегральной функции:

f(x)=

P(a<x<b)=(5.14)

(f(x)dx называется элементом вероятности)

F(x)=(5.15)

Свойства f(x):

1) f(x);

2) (5.16)

3) (

Наиболее употребимыми являются следующие законы распределения непрерывной с.в. (задаются они формулой для f(x)):

§ равномерное распределение вероятностей

Пусть [a,b] – шкала некоторого прибора. Вероятность p попадания указателя в некоторый отрезок шкалы [,] равна p=k(-), (k>0).

Тогда, так как

p(a<x<b)=1, то k(b-a)=1 k=

p(<x<)=F(x)=p(a<X<x)=(5.17)

График F(x) на рисунке 11.

рис.11

f (x)=(5.18)

рис.12

§ показательное распределение

(5.19)

F(x)=(5.20)

§ нормальное распределение

(5.21)

F(x)=(5.22)

Здесь a=M(x), - параметры распределения с.в.Х.

График f(x) представлен на рис.13 и называется нормальной кривой (кривой Гаусса).

рис.13

При a=0, имеем плотность нормированного распределения:

Эта функция табулирована (см. приложение 1), график её на рис.14.

рис.14

В этом случае интегральная функция распределения с.в.Х есть функция Лапласа:

(5.23)

График функции Лапласа Ф(х) на рис.15.

рис.15

Из него видно, что:

1) Ф(0)=0,

2) Ф(-х)=-Ф(х),

3)

Вероятность того, что Х примет значение, принадлежащее интервалу (c,d), находим по формуле:

(5.24)

Вероятность того, что абсолютная величина отклонения меньше положительного числа, равна:

, (5.25)

()

При а=0 справедливо равенство:

(5.25а)

§ Числовые характеристики непрерывной с.в.:

- математическое ожидание M(X)

(5.26)

(5.27)

- дисперсия D(X)

(5.28)

(5.29)

Эти равенства можно заменить равносильными равенствами:

(5.30)

(5.31)

- среднее квадратическое отклонение

(5.32)

При этом для равномерного распределения:

(5.33)

(5.34)

(5.35)

Для показательного распределения

:

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы