Основы теории вероятности

(5.8)

Для биномиального распределения (формула (5.1)) имеем:

M(X)=np (5.9)

D(X)=npq (5.10)

Для распределения Пуассона (формула (5.2)):

M(Х)=D(Х)=np=(5.11)

Задачи

Задача №57. В партии из 6-ти деталей 4 стандартных. Наудачу отобраны три дет

али. Составить закон распределения дискретной с.в. Х – числа стандартных деталей среди отобранных. Найти числовые характеристики с.в. Х.

Решение. Имеем гипергеометрический закон распределения с.в. Х:

Возможные значения Х:

*

Соответствующие вероятности вычисляются по формуле (5.4):

=

Имеем ряд распределения:

Х:

0

1

2

3

0

Многоугольник распределения.

рис.3

Функцией распределения F(х) называется вероятность того, что с.в. Х в результате испытаний примет значение, меньшее х: F(x)=P(X<x)

В нашем случае имеем:

если х1, то F(x)=0,

если 1<x2, то F(x)=,

если 2<x3, то F(x)=

если х>3, то F(x)=.

График этой функции на рис.4.

рис.4

Математическое ожидание (по формуле (5.5)):

Дисперсия (по формуле (5.7)):

Среднее квадратическое отклонение (по формуле (5.8 )):

Задача №58. В денежной лотерее 100 билетов, из них 1 составляет выигрыш в 50 грн, 10 – в 1 грн. Составить закон распределения с.в. Х – стоимости возможного выигрыша для владельца одного лотерейного билета.

Решение. Вероятность выигрыша 1 грн равна

,

аналогично получим

, .

Имеем ряд распределения с.в. Х:

0

1

50

0,89

0,1

0,01

Многоугольник распределения с.в. Х:

рис.5

Функция распределения.

рис.6

Задача №59. Среди 20-ти изделий 5 бракованных. Случайным образом выбираются 3 изделия для проверки их качества. С.в. Х – число бракованных изделий. Построить ряд распределения Х, найти М(Х), D(X), если Х=0,1,2,3.

Решение.

Имеем ряд распределения с.в. Х.

0

1

2

3

Х:

Задача №60. Вероятность того, что расход воды на некотором предприятии окажется нормальным (не более определённого числа литров в сутки), равна . Найти вероятности того, что в ближайшие 6 дней расход воды будет нормальным в течение 1-го, 2-х, 3-х, 4-х, 5-ти, 6-ти дней.

Решение. Пусть с.в. Х – число дней, в течение которых расход воды будет нормальным. Тогда вероятности, соответствующие возможным значениям Х (от 1 до 6), будут вычисляться по формуле Бернулли (5.1) и распределение с.в. Х будет биномиальным.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы