Основы теории вероятности
(5.8)
Для биномиального распределения (формула (5.1)) имеем:
M(X)=np (5.9)
D(X)=npq (5.10)
Для распределения Пуассона (формула (5.2)):
M(Х)=D(Х)=np=(5.11)
Задачи
Задача №57. В партии из 6-ти деталей 4 стандартных. Наудачу отобраны три дет
али. Составить закон распределения дискретной с.в. Х – числа стандартных деталей среди отобранных. Найти числовые характеристики с.в. Х.
Решение. Имеем гипергеометрический закон распределения с.в. Х:
Возможные значения Х:
Соответствующие вероятности вычисляются по формуле (5.4):
=
Имеем ряд распределения:
Х: |
|
0 |
1 |
2 |
3 |
|
0 |
|
|
|
Многоугольник распределения.
рис.3
Функцией распределения F(х) называется вероятность того, что с.в. Х в результате испытаний примет значение, меньшее х: F(x)=P(X<x)
В нашем случае имеем:
если х1, то F(x)=0,
если 1<x2, то F(x)=,
если 2<x3, то F(x)=
если х>3, то F(x)=.
График этой функции на рис.4.
рис.4
Математическое ожидание (по формуле (5.5)):
Дисперсия (по формуле (5.7)):
Среднее квадратическое отклонение (по формуле (5.8 )):
Задача №58. В денежной лотерее 100 билетов, из них 1 составляет выигрыш в 50 грн, 10 – в 1 грн. Составить закон распределения с.в. Х – стоимости возможного выигрыша для владельца одного лотерейного билета.
Решение. Вероятность выигрыша 1 грн равна
,
аналогично получим
, .
Имеем ряд распределения с.в. Х:
|
0 |
1 |
50 |
|
0,89 |
0,1 |
0,01 |
Многоугольник распределения с.в. Х:
рис.5
Функция распределения.
рис.6
Задача №59. Среди 20-ти изделий 5 бракованных. Случайным образом выбираются 3 изделия для проверки их качества. С.в. Х – число бракованных изделий. Построить ряд распределения Х, найти М(Х), D(X), если Х=0,1,2,3.
Решение.
Имеем ряд распределения с.в. Х.
|
0 |
1 |
2 |
3 |
|
|
|
|
|
Х:
Задача №60. Вероятность того, что расход воды на некотором предприятии окажется нормальным (не более определённого числа литров в сутки), равна . Найти вероятности того, что в ближайшие 6 дней расход воды будет нормальным в течение 1-го, 2-х, 3-х, 4-х, 5-ти, 6-ти дней.
Решение. Пусть с.в. Х – число дней, в течение которых расход воды будет нормальным. Тогда вероятности, соответствующие возможным значениям Х (от 1 до 6), будут вычисляться по формуле Бернулли (5.1) и распределение с.в. Х будет биномиальным.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах