Основы теории вероятности

K:

1

2

3

4

n

0,3

2.

Мы получим М(Х), если бесконечная сумма – ряд сходится.

Воспользуемся признаком Даламбера для знакоположительных рядов.

*ряд сходится и М(Х) – его сумма.

Для её нахождения применим искусственный приём:

+ . . .

Примечание. Каждая бесконечная сумма в скобках в правой части равенства для М(Х) вычисляется по формуле для суммы бесконечной убывающей геометрической прогрессии ().

Задача №65. Мишень вращается вокруг оси Ох. При достаточно большой угловой скорости вращения стрелок не в состоянии различить цифры. Стреляет наугад. Секторы одинаковы. Выигрыш соответствует номеру сектора.

Стоит ли ему участвовать в такой игре, если за право стрелять один раз надо платить 5 грн?

Решение.

рис.10

Х:

1

2

3

4

5

6

7

8

Вероятности всех возможных значений Х равны между собой и равны

Найдём

.

Стоимость выстрела 5 грн. Очевидно, стрелять много раз невыгодно.

Задача №66. Дискретная с.в. Х принимает только 3 возможных значения: 1,

, . ().

Найти закон распределения с.в. Х, если

М(Х)=2,2 и D(X)=0,76.

Решение.

1. Запишем ряд распределения для Х, найдя предварительно

2.

Х:

1

0,3

0,2

0,5

2. Запишем равенства для математического ожидания М(Х) и дисперсии D(X):

Получим нелинейную систему двух уравнений с двумя неизвестными и . Решим её.

Х:

1

2

3

0,3

0,2

0,5

5.2 Непрерывные случайные величины

Непрерывной случайной величиной называют величину, которая может принимать любое числовое значение из некоторого конечного (a,b) или бесконечного интервала.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы