Линейно упорядоченное пространство ординальных чисел
§2. ТОПОЛОГИЧЕСКИЕ ОПРЕДЕЛЕНИЯ.
Определение 1.13. Топологическим пространством называется пара (Х,), состоящая из множества Х и некоторого семейства подмножеств множества Х, удовлетворяющая следующим условиям:
1) множество Х и &A
Elig; принадлежат ;
2) пересечение конечного числа множеств из принадлежат ;
3) объединение любого числа множеств из принадлежит .
Условия 1 – 3 называются аксиомами топологического пространства, его элементы – точками пространства. Подмножества множества Х, принадлежащие семейству , называются открытыми в Х. Семейство открытых подмножеств пространства Х называется также топологией на Х.
Определение 1.14. Замкнутым множеством называется множество, которое является дополнением к открытому.
Определение 1.15. Окрестностью точки х топологического пространства называется любое открытое множество U, содержащее х.
Определение 1.16. Топологическое пространство Х называется компактным, если из любого его покрытия открытыми множествами можно выделить конечное подпокрытие.
Определение 1.17. Топологическое пространство Х называется компактным, если любая его центрированная система замкнутых множеств в Х имеет непустое пересечение.
Определения 1.16 и 1.17 равносильны ([5]).
Определение 1.18. Пространство Х называется локально компактным, если каждая точка имеет окрестность, замыкание которой компактно.
Определение 1.19. Топологическое пространство Х называется счётно компактным, если из каждого счётного открытого покрытия пространства Х можно выбрать конечное подпокрытие.
Определение 1.20. Топологическое пространство Х называется счётно компактным, если каждое его бесконечное подмножество содержит хотя бы одну предельную точку.
Определения 1.19 и 1.20 равносильны ([5]).
Определение 1.21. Пространство называется компактификацией топологического пространства Х, если:
1) компактно;
2) Х – подпространство ;
3) Х плотно в .
Определение 1.22. Топологическое пространство Х называется Т1-пространством, если для каждой пары различных точек х1, х2существует открытое множество , такое, что х1и х2.
Определение 1.23. Если любые две различные точки х и у топологического пространства Х имеют непересекающиеся окрестности, то пространство Х называется хаусдорфовым пространством или Т2-пространством.
Определение 1.24. Топологическое пространство Х называется регулярным пространством, или Т3-пространством, если Х есть Т1-пространство и для любого и каждого замкнутого множества , такого, что , существуют открытые множества U1 и U2, такие, что 1, 2 и U1U2 = Æ.
Определение 1.25. Топологическое пространство Х называется тихоновским пространством, или Т3-пространством, если Х есть Т1-пространство и для любого и любого замкнутого множества , такого, что , существует непрерывная функция f: , такая, что f(x)=0 и f(y)=1 для .
Определение 1.26. Топологическое пространство Х называется нормальным, или Т4-пространством, если для каждой пары непересекающихся замкнутых множеств А и В существуют непересекающиеся открытые множества U и V такие, что АU, BV.
ГЛАВА 2. Линейно упорядоченное пространство ординальных чисел.
§1.ВПОЛНЕ УПОРЯДОЧЕННЫЕ МНОЖЕСТВА И ИХ СВОЙСТВА.
Рассмотрим вполне упорядоченные множества и их свойства.
Предложение 1.1. Всякое подмножество вполне упорядоченного множества само есть вполне упорядоченное множество (очевидно).
Предложение 1.2. Если f – изоморфизм вполне упорядоченного множества А в себя, то для любого элемента хА выполняется неравенство f (x)x. (1)
Доказательство.
Будем доказывать методом от противного и предположим, что в А есть элементы х, не удовлетворяющие неравенству (1). Тогда среди этих элементов есть наименьший, так как А является вполне упорядоченным. Обозначим его через х1 : f (x1)<x1. Обозначим f (x1) = x0 и перепишем неравенство: х0<х1. Так как f – изоморфизм, то выполняется неравенство: f(x0)<f (x1) = x0.
Таким образом, получили следующие неравенства: х0 < x1 и f (x0) < x0 . Эти неравенства противоречат определению элемента х1, как наименьшего из элементов х множества А, не удовлетворяющих условию f (x) < x. ■
Определение 2.1. Начальным отрезком, отсекаемым элементом аА от линейно упорядоченного множества А, называется множество Аа = {x | x A, x < a}.
Предложение 1.3. Пусть А’ – произвольное подмножество вполне упорядоченного множества А. Тогда множество А не изоморфно никакому отрезку множества А’.
Доказательство:
Будем доказывать методом от противного и предположим, что существует изоморфизм вполне упорядоченного множества А в некоторый отрезок Ах’ подмножества А’А. Тогда f (x) Ax’. Следовательно, f (x) < x – противоречие с предложением 1.2. ■
Другие рефераты на тему «Математика»:
- Нестандартный анализ
- Математическое моделирование и расчет систем управления техническими объектами
- Производная и ее применение для решения прикладных задач
- Однополостный гиперболоид
- Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах