Проектирование двигательной установки и элементов конструкции второй ступени баллистической ракеты с ЖРД

Отличительной особенностью вытеснительной системы подачи топлива является то, что баки с компонентами топлива находятся под большим давлением, значительно превышающим давление в КС. По этой причине топливные баки приходится делать толстостенными и, как следствие, большой массы.

Применение вытеснительной системы подачи топлива целесообразно при давлениях в КС не больше 1 src="images/referats/12551/image004.png">. Газовытеснительные системы подачи топлива находят в основном применение в двигателях небольшой тяги, рассчитанных на малое время _еботы, с малым удельным импульсом тяги.

При насосной системе подачи топлива нет необходимости поддерживать в баках высокое давление. Небольшое давление воздушной подушки в баках , создаётся для обеспечения бескавитационной работы насосов. Насосная система подачи топлива значительно сложнее вытеснительной, но для двигателей средних и больших тяг она предпочтительнее, т. к. вес всей системы питания ЖРД, включая баки с топливом, будет меньше.

Системы питания ЖРД с насосной подачей топлива бывают:

- с автономной (независимой) турбиной (схема “без дожигания”);

- с предкамерной турбиной (схема “с дожиганием”).

Системы ЖРД с автономной турбиной применяются для маршевых двигателей средней тяги (максимальное значение давления в КС ). Следует учитывать то, что автономные турбины являются высокоперепадными и малорасходными, а также то, что они снижают удельный импульс тяги двигателя на 2-6 % из-за выброса “мятого” газа за борт ракеты.

Системы ЖРД с предкамерной турбиной используются в двигателях большой тяги с высоким давлением в КС . Предкамерные турбины являются высокорасходными и низкоперепадными. Двигатели данной схемы более экономичны, так как в них исключаются потери удельного импульса тяги из-за расходования топлива на питание турбин.

Так как проектируемый двигатель является двигателем средней тяги с давлением в КС , то выбираем насосную систему подачи топлива без дожигания генераторного газа (рис. 1).

Рис.1.1 Схема ЖРД с автономной турбиной: 1- насос горючего, 2- насос окислителя, 3- камера сгорания, 4-газогенератор, 5-турбина, 6-выхлопной патрубок.

1.2 Выбор давления в камере сгорания и на срезе сопла

Величина давления в камере сгорания влияет на удельный импульс, габариты и массу ДУ. Увеличение давления в КС ведет к росту удельного импульса двигателя, уменьшению линейных размеров КС и соответственно, к уменьшению массы двигателя.

Уменьшение площади критического сечения ведет к уменьшению расхода топлива. Но для подачи топлива в КС насосы должны создавать большие давления подачи, что требует повышения мощности турбины и расхода топлива на нее.

Уменьшение размеров КС вызывает трудности с размещением форсунок на форсуночной головке, а также может вызвать проблему охлаждения двигателя, так как растет теплонапряженность.

Выбирая давление в камере сгорания, необходимо учитывать, что выигрыш в увеличении удельного импульса, уменьшения габаритов и массы ДУ может быть потерян из-за увеличения расхода топлива на турбину и увеличения массы ТНА. В зависимости от схемы ЖРД и системы подачи топлива, существуют рекомендации на величину давления в камере сгорания:

- Для вытеснительной системы подачи топлива .

- Для насосной системы подачи топлива без дожигания генераторного газа (с автономной турбиной) .

- Для насосной системы подачи топлива с дожиганием генераторного газа с предкамерной турбиной работающей по схеме «газ-жидкость» .

- Для насосной системы подачи топлива с дожиганием генераторного газа с предкамерной турбиной работающей по схеме «газ-газ» .

Для проектируемого двигателя работающего без дожигания генераторного газа принимаем давление в камере .

Величина давления на срезе сопла, как и величина давления в камере сгорания, влияет на удельный импульс, габариты и массу ДУ.

При малых значениях давления на срезе сопла увеличивается величина удельного импульса. Но при этом размеры закритической части сопла увеличиваются, что приводит к росту массы ЖРД, а также к увеличению габаритов сопловой части двигателя.

Выбираем давление на срезе сопла минимальным при условии, что прирост удельного импульса компенсирует потери появившиеся за счет увеличения массы двигателя, а его габариты не окажут трудностей при компоновке.

В зависимости от назначения ДУ существуют рекомендации по выбору оптимального давления на срезе сопла:

- для первой ступени давление на срезе сопла принимают .

- на второй ступени давление на срезе сопла принимают .

Для проектируемого двигателя выбираем давление на срезе сопла равным .

1.3 Выбор количества камер сгорания двигательной установки

В зависимости от числа камер сгорания ДУ бывают:

- однокамерные – могут иметь один или два турбонасосных агрегата (ТНА);

- многокамерные – имеют один или два общих ТНА на все камеры ДУ;

- блочные – состоят из нескольких автономных независимых двигателей, объединённых общей рамой и общей системой управления.

При одной и той же тяге однокамерный двигатель большей тяги требует большего времени на доводку, чем многокамерная связка двигателей. При этом также повышается вероятность возникновения высокочастотных колебаний. Кроме того, связка двигателей имеет меньшие габаритные размеры по высоте и лучше заполняет объём двигательного отсека. Масса связки сопоставима с массой однокамерного двигателя. Но увеличение числа камер приводит к увеличению количества различных агрегатов, обеспечивающих работу двигателя, что снижает надёжность установки, также существенно усложняется система подачи топлива из-за разветвленной системы трубопроводов.

При выборе схемы двигательной установки мы будем руководствоваться значением тяги проектируемого двигателя. По существующим рекомендациям одна камера двигательной установки должна создавать тягу в интервале от 200 до 300 кН. Проектируемый двигатель имеет тягу равную 208кН, следовательно, выбираем число камер двигательной установки Z=1.

1.4 Управление вектором тяги

Для того, чтобы обеспечить заданную траекторию полёта ракеты, необходимо создать требуемые по величине и направлению управляющие силы и моменты.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы