Понятие о физической величине. Международная система единиц физических величин СИ

При измерениях необходимо сделать все возможное, чтобы исключить систематические погрешности, так как они могут быть так велики, что сильно исказят результаты. Выявленные погрешности устраняют введением поправок.

Случайные ошибки. Случайной ошибкой является составляющая погрешности измерения, которая изменяется случайным образом, т. е. это ошибка измерения, остающаяся после устранени

я всех выявленных систематических и грубых ошибок. Случайные ошибки вызываются большим числом как объективных, так и субъективных факторов, которые нельзя выделить и учесть в отдельности. Поскольку причины, приводящие к случайным ошибкам, не одинаковы, в каждом эксперименте и не могут быть учтены, исключить такие ошибки нельзя, можно лишь оценить их значение. С помощью методов теории вероятностей можно учесть их влияние на оценку истинного значения измеряемой величины со значительно меньшей ошибкой, чем ошибки отдельных измерений.

Поэтому, когда случайная погрешность больше погрешности измерительного прибора, необходимо многократно повторять одно и то же измерение для уменьшения ее значения. Это позволяет минимизировать случайную погрешность и сделать ее сравнимой с погрешностью прибора. Если же случайная ошибка меньше погрешности прибора, то уменьшать ее не имеет смысла.

Кроме этого, ошибки делят на абсолютные, относительные и инструментальные. Абсолютной ошибкой считают погрешность, выраженную в единицах измеряемой величины. Относительной ошибкой является отношение абсолютной ошибки к истинному значению измеряемой величины. Составляющую ошибки измерения, которая зависит от погрешности применяемых средств измерения, называют инструментальной погрешностью измерения.

2. ПОГРЕШНОСТИ ПРЯМЫХ РАВНОТОЧНЫХ ИЗМЕРЕНИЙ. ЗАКОН НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ.

Прямые измерения – это такие измерения, когда значение изучаемой величины находят непосредственно из опытных данных, например снимая показания прибора, измеряющего значение искомой величины. Для нахождения случайной погрешности измерение необходимо провести несколько раз. Результаты таких измерений имеют близкие значения погрешностей и называются равноточными.

Пусть в результате n измерений величины х, проведенных с одинаковой точностью, получен ряд значений: х1, х2, …, хn. Как показано в теории ошибок, наиболее близким к истинному значению х0 измеряемой величины х является среднее арифметическое значение

. (2.1)

Среднее арифметическое значение рассматривают только как наиболее вероятное значение измеряемой величины. Результаты отдельных измерений в общем случае отличаются от истинного значения х0. При этом абсолютная погрешность i-го измерения составляет

Dxi' = х0 – xi4

и может принимать как положительные, так и отрицательные значения с равной вероятностью. Суммируя все погрешности, получаем

,

Откуда

. (2.2)

В этом выражении второе слагаемое в правой части при большом n равно нулю, так как всякой положительной погрешности можно поставить в соответствие равную ей отрицательную. Тогда х0=. При ограниченном числе измерений будет лишь приближенное равенство х0. Таким образом, можно назвать действительным значением.

Во всех практических случаях значение х0 неизвестно и есть лишь определенная вероятность того, что х0 находится в каком-то интервале вблизи и требуется определить этот интервал, соответствующий этой вероятности. В качестве оценки абсолютной погрешности отдельного измерения используют Dxi = – xi.

Она определяет точность данного измерения.

Для ряда измерений определяют среднюю арифметическую погрешность

.

Она определяет пределы, в которых лежит более половины измерений. Следовательно, х0 с достаточно большой вероятностью попадает в интервал от –h до +h. Результаты измерений величины х записывают тогда в виде:

.

Величина х измерена тем точнее, чем меньше интервал, в котором находится истинное значение х0.

Абсолютная погрешность результатов измерений Dx сама по себе еще не определяет точности измерений. Пусть, например, точность некоторого амперметра составляет 0.1а. Были проведены измерения силы тока в двух электрических цепях. При этом получили следующие значения: 320.1а и 0.20.1а. Из примера видно, что, хотя абсолютная погрешность измерений одинакова, точность измерений различна. В первом случае измерения достаточно точны, а во втором – позволяют судить лишь о порядке величины. Следовательно, при оценке качества измерения необходимо сравнивать погрешность с измеренным значением, что дает более наглядное представление о точности измерений. Для этого вводится понятие относительной погрешности

dx = Dx /. (2.3)

Относительную погрешность обычно выражают в процентах.

Так как в большинстве случаев измеряемые величины имеют размерность, то и абсолютные погрешности размерны, а относительные ошибки безразмерны. Поэтому с помощью последних можно производить сравнение точности измерений разнородных величин. Наконец, эксперимент должен быть поставлен таким образом, чтобы относительная погрешность оставалась постоянной во всем диапазоне измерений.

Следует отметить, что при правильных и тщательно выполненных измерениях средняя арифметическая погрешность их результата близка к погрешности измеряемого прибора.

Если измерения искомой величины х проведены много раз, то частоты появления того или иного значения хi можно представить в виде графика, имеющего вид ступенчатой кривой – гистограммы (см. рис. 1), где у – число отсчетов; Dxi = хi – xi+1 (i изменяется от –n до +n). С увеличением числа измерений и уменьшением интервала Dxi гистограмма переходит в непрерывную кривую, характеризующую плотность распределения вероятности того, что величина xi окажется в интервале Dxi.

Под распределением случайной величины понимают совокупность всех возможных значений случайной величины и соответствующих им вероятностей. Законом распределения случайной величины называют всякое соответствие случайной величины возможным значениям их вероятностей. Наиболее общей формой закона распределения является функция распределения Р(х).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы