Понятие о физической величине. Международная система единиц физических величин СИ
Под планированием эксперимента понимают процесс определения числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью.
Планирование эксперимента – это раздел математической статистики. В нем рассматриваются статистические методы планирования эксперимента. Эти методы позволяют во многих случаях при минимальном числе опытов получать мод
ели многофакторных процессов.
Эффективность использования статистических методов планирования эксперимента при исследовании технологических процессов объясняется тем, что многие важные характеристики этих процессов являются случайными величинами, распределения которых близко следуют нормальному закону.
Характерными особенностями процесса планирования эксперимента являются стремление минимизировать число опытов; одновременное варьирование всех исследуемых факторов по специальным правилам – алгоритмам; применение математического аппарата, формализующего многие действия исследователя; выбор стратегии, позволяющей принимать обоснованные решения после каждой серии опытов.
При планировании эксперимента статистические методы применяются на всех этапах исследования и, прежде всего, перед постановкой опытов, разрабатывая схему эксперимента, а также в ходе эксперимента, при обработке результатов и после эксперимента, принимая решения о дальнейших действиях. Такой эксперимент называют активным и он предполагает планирование эксперимента.
Основные преимущества активного эксперимента связаны с тем, что он позволяет:
1) минимизировать общее число опытов;
2) выбирать четкие логически обоснованные процедуры, последовательно выполняемые экспериментатором при проведении исследования;
3) использовать математический аппарат, формализующий многие действия экспериментатора;
4) одновременно варьировать всеми переменными и оптимально использовать факторное пространство;
5) организовать эксперимент таким образом, чтобы выполнялись многие исходные предпосылки регрессионного анализа;
6) получать математические модели, имеющие лучшие в некотором смысле свойства по сравнению с моделями, построенными из пассивного эксперимента;
7) рандомизировать условия опытов, т. е. многочисленные мешающие факторы превратить в случайные величины;
8) оценивать элемент неопределенности, связанный с экспериментом, что дает возможность сопоставлять результаты, получаемые разными исследователями.
Чаще всего активный эксперимент ставят для решения одной из двух основных задач. Первую задачу называют экстремальной. Она заключается в отыскании условий процесса, обеспечивающих получение оптимального значения выбранного параметра. Признаком экстремальных задач является требование поиска экстремума некоторой функции (*проиллюстрировать графиком*). Эксперименты, которые ставят для решения задач оптимизации, называют экстремальными.
Вторую задачу называют интерполяционной. Она состоит в построении интерполяционной формулы для предсказания значений изучаемого параметра, зависящего от ряда факторов.
Для решения экстремальной или интерполяционной задачи необходимо иметь математическую модель исследуемого объекта. Модель объекта получают, используя результаты опытов.
При исследовании многофакторного процесса постановка всех возможных опытов для получения математической модели связана с огромной трудоемкостью эксперимента, так как число всех возможных опытов очень велико. Задача планирования эксперимента состоит в установлении минимально необходимого числа опытов и условий их проведения, в выборе методов математической обработки результатов и в принятии решений.
ОСНОВНЫЕ ЭТАПЫ И РЕЖИМЫ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ
1. Содержательный анализ эксперимента, построение априорной вероятностной математической модели источника экспериментальных данных.
2. Составление плана эксперимента, в частности, определение значений независимых переменных, выбор тестовых сигналов, оценка объема наблюдений. Предварительное обоснование и выбор методов и алгоритмов статистической обработки экспериментальных данных.
3. Проведение непосредственно экспериментальных исследований, сбор экспериментальных данных, их регистрация и ввод в ЭВМ.
4. Предварительная статистическая обработка данных, предназначенная, в первую очередь, для проверки выполнения предпосылок, лежащих в основе выбранного статистического метода построения стохастической модели объекта исследований, а при необходимости – для коррекции априорной модели и изменения решения о выборе алгоритма обработки.
5. Составление детального плана дальнейшего статистического анализа экспериментальных данных.
6. Статистическая обработка экспериментальных данных (вторичная, полная, итоговая обработка), направленная на построение модели объекта исследования, и статистический анализ ее качества. Иногда на этом же этапе решаются и задачи использования построенной модели, например: оптимизируются параметры объекта.
7. Формально-логическая и содержательная интерпретация результатов экспериментов, принятие решения о продолжении или завершении эксперимента, подведение итогов исследования.
Статистическая обработка экспериментальных данных может быть осуществлена в двух основных режимах.
В первом режиме сначала производится сбор и регистрация полного объема экспериментальных данных и лишь затем они обрабатываются. Этот вид обработки называют off-line-обработкой, апостериорной обработкой, обработкой данных по выборке полного (фиксированного) объема. Достоинством этого режима обработки является возможность использования всего арсенала статистических методов анализа данных и, соответственно, наиболее полное извлечение из них экспериментальной информации. Однако оперативность такой обработки может не удовлетворять потребителя, кроме того, управление ходом эксперимента почти невозможно.
Во втором режиме обработка наблюдений производится параллельно с их получением. Этот вид обработки называют on-line-обработкой, обработкой данных по выборке нарастающего объема, последовательной обработкой данных. В этом режиме появляется возможность экспресс-анализа результатов эксперимента и оперативного управления его ходом.
ОБЩИЕ СВЕДЕНИЯ ОБ ОСНОВНЫХ СТАТИСТИЧЕСКИХ МЕТОДАХ
При решении задач обработки экспериментальных данных используются методы, основанные на двух основных составных частях аппарата математической статистики: теории статистического оценивания неизвестных параметров, используемых при описании модели эксперимента, и теории проверки статистических гипотез о параметрах или природе анализируемой модели.
1. Корреляционный анализ. Его сущность состоит в определении степени вероятности связи (как правило, линейной) между двумя и более случайными величинами. В качестве этих случайных величин могут выступать входные, независимые переменные. В этот набор может включаться и результирующая (зависимая переменная). В последнем случае корреляционный анализ позволяет отобрать факторы или регрессоры (в регрессионной модели), оказывающие наиболее существенное влияние на результирующий признак. Отобранные величины используются для дальнейшего анализа, в частности при выполнении регрессионного анализа. Корреляционный анализ позволяет обнаруживать заранее неизвестные причинно-следственные связи между переменными. При этом следует иметь в виду, что наличие корреляции между переменными является только необходимым, но не достаточным условием наличия причинных связей.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода