Понятие о физической величине. Международная система единиц физических величин СИ

Тогда функция р(х) = Р' (х) – плотность распределения вероятности или дифференциальная функция распределения. График плотности распределения вероятностей называется кривой распределения.

Функция р(х) характерна тем, что произведение р(х)dx есть вероятность оказаться отдельному, случайно выбранному значению измеряемой величины в интервале (х, x + dx).

В общем случае эта вероятность может

определяться различными законами распределений (нормальный (Гаусса), Пуассона, Бернулли, биномиальный, отрицательный биномиальный, геометрический, гипергеометрический, равномерный дискретный, отрицательный экспоненциальный). Однако чаще всего вероятность появления величины xi в интервале (х, x + dx) в физических экспериментах описывают нормальным законом распределения – законом Гаусса (см. рис. 2):

, (2.4)

где s2 - дисперсия генеральной совокупности. Генеральной совокупностью называют все множество возможных значений измерений xi или возможных значений погрешностей Dxi.

Широкое использование закона Гаусса в теории ошибок объясняется следующими причинами:

1) равные по абсолютному значению погрешности встречаются одинаково часто при большом числе измерений;

2) малые по абсолютному значению погрешности встречаются чаще, чем большие, т. е. вероятность появления погрешности тем меньше, чем больше ее абсолютное значение;

3) погрешности измерений принимают непрерывный ряд значений.

Однако, эти условия никогда строго не выполняются. Но эксперименты подтвердили, что в области, где погрешности не очень велики, нормальный закон распределения хорошо согласуется с опытными данными. С помощью нормального закона можно найти вероятность появления погрешности того или иного значения.

Распределение Гаусса характеризуется двумя параметрами: средним значением случайной величины и дисперсией s2. Среднее значение определяется абсциссой (х =) оси симметрии кривой распределения, а дисперсия показывает, как быстро уменьшается вероятность появления погрешности с увеличением ее абсолютного значения. Кривая имеет максимум при х =. Следовательно, среднее значение является наиболее вероятным значением величины х. Дисперсия определяется полушириной кривой распределения, т. е. расстоянием от оси симметрии до точек перегиба кривой. Она является средним квадратом отклонения результатов отдельных измерений от их среднего арифметического значения по всему распределению. Если при измерении физической величины получают только постоянные значения х =, то s2 = 0. Но если значения случайной величины х принимают значения, не равные , то ее дисперсия не равна нулю и положительна. Дисперсия, таким образом, служит мерой флуктуации значений случайной величины.

Мера рассеяния результатов отдельных измерений от среднего значения должна выражаться в тех же единицах, что и значения измеряемой величины. В связи с этим в качестве показателя флуктуации результатов измерений гораздо чаще используют величину

,

называемую средней квадратичной погрешностью.

Она является важнейшей характеристикой результатов измерений и остается постоянной при неизменности условий эксперимента.

Значение этой величины определяет форму кривой распределения.

Так как при изменении s площадь под кривой, оставаясь постоянной (равной единице), меняет свою форму, то с уменьшением s кривая распределения вытягивается вверх вблизи максимума при х =, и сжимаясь в горизонтальном направлении.

С увеличением s значение функции р(хi) уменьшается, и кривая распределения растягивается вдоль оси х (см. рис. 2).

Для нормального закона распределения средняя квадратическая погрешность отдельного измерения

, (2.5)

а средняя квадратическая погрешность среднего значения

. (2.6)

Средняя квадратическая погрешность более точно характеризует погрешности измерений, чем средняя арифметическая погрешность, так как она получена достаточно строго из закона распределения случайных величин погрешностей. Кроме того, непосредственная связь ее с дисперсией, вычисление которой облегчается рядом теорем, делает среднюю квадратическую погрешность очень удобным параметром.

Наряду с размерной погрешностью s используют и безразмерную относительную погрешность ds=s/, которая, как и dx, выражается либо в долях единицы, либо в процентах. Окончательный результат измерений записывают в виде:

, . (2.7)

Однако, на практике невозможно провести слишком много измерений, поэтому нельзя построить нормальное распределение, чтобы точно определить истинное значение х0. В этом случае хорошим приближением к истинному значению можно считать , а достаточно точной оценкой ошибки измерений – выборочную дисперсию , вытекающую из нормального закона распределения, но относящуюся к конечному числу измерений. Такое название величины объясняется тем, что из всего множества значений хi, т. е. генеральной совокупности выбирают (измеряют) лишь конечное число значений величины хi (равное n), называемых выборкой. Выборка характеризуется уже выборочным средним значением и выборочной дисперсией.

Тогда выборочная средняя квадратическая погрешность отдельного измерения (или эмпирический стандарт)

, (2.8)

а выборочная средняя квадратическая погрешность ряда измерений

. (2.9)

Из выражения (2.9) видно, что, увеличивая число измерений, можно сделать сколь угодно малой среднюю квадратическую погрешность . При n > 10 заметное изменение величины достигается лишь при весьма значительном числе измерений, поэтому дальнейшее увеличение числа измерений нецелесообразно. К тому же, невозможно полностью исключить систематические погрешности, и при , меньшей систематической ошибки дальнейшее увеличение числа опытов также не имеет смысла.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы