Экономико-математические методы и модели
Задача 1 (по товару )
max F1 = 12 * X111 + 11 * X121 + 8 * X211 + 9 * X221 + 11 * X311 + 11 * X321
X111 + X211 + X311 ≤ b11 ≤ 480 X121 + X221 + X321 ≤ b21 ≤ 270
X111 + X121 ≤ a11 ≤ 400 X211 + X221 ≤ a21 ≤ 480 X311 + X321 ≤ a31 ≤ 420
Xij1 ≥ 0
Задача 2 (по товару )
max F2 = 9 * X112 + 10 * X122 + 7 * X212 + 8 * X222 + 9 * X312 + 11 * X322
X112 + X212 + X312 ≤ b12 ≤ 130 X122 + X222 + X322 ≤ b22 ≤ 320
X112 + X122 ≤ a12 ≤ 410 X212 + X222 ≤ a22 ≤ 550 X312 + X322 ≤ a32 ≤ 480
Xij2 ≥ 0
Как видно, решение поставленной задачи сводится к решению двух задач транспортного типа.
2) Для решения задач 1, 2 методом потенциалов, сопоставим суммарное наличие каждого товара у производителей и суммарные потребности покупателей.
= 400 + 480 + 420 = 1300, = 480 + 270 = 750;
1300 – 750 = 550
Наличие товара Т1 превышает потребности покупателей. Вводим фиктивного покупателя В3 с потребностью b31 = 550.
= 410 + 550 + 480 = 1440, = 130 + 320 = 990;
1440 – 450 = 990
Наличие товара Т2 превышает потребности покупателей. Вводим фиктивного покупателя В3 с потребностью b32 = 990.
Получаем закрытые модели двух транспортных задач. Для их решения составляем две таблицы. В верхних правых углах клеток выписаны тарифы и . Для фиктивных производителей и покупателей тарифы равны нулю. Последние строки и столбцы таблиц служат для записи потенциалов.
Таблица 1.2 (к задаче 1)
Производители |
Покупатели | |||||
B1 |
B2 |
B3 |
ai1 |
ui | ||
A1 |
12 400 |
11 12 |
0 1 |
400 |
1 | |
A2 |
8 11 |
9 11 |
0 480 |
480 |
0 | |
A3 |
11 80 |
11 270 |
0 70 |
420 |
0 | |
bj1 |
480 |
270 |
550 |
1300 |
– | |
vj |
11 |
11 |
0 |
– |
– |
Таблица 1.3 (к задаче 2)
Производители |
Покупатели | |||||
B1 |
B2 |
B3 |
ai1 |
ui | ||
A1 |
9 130 |
10 11 |
0 280 |
410 |
0 | |
A2 |
7 9 |
8 11 |
0 550 |
550 |
0 | |
A3 |
9 9 |
11 320 |
0 160 |
480 |
0 | |
bj1 |
130 |
320 |
990 |
1440 |
– | |
vj |
9 |
11 |
0 |
– |
– | |
Начальные планы распределения товаров определены по методу максимальной прибыли, т.е. в первую очередь заполнялись по максимуму клетки с наибольшими тарифами. Более конкретно, просматривая таблицу 1.2, замечаем, что максимальный тариф 12 стоит в клетке (1,1). В эту клетку ставим число 400. При этом запасы производителя А1 исчерпан. Далее, в клетку (3,1) ставим 80, а в клетку (3,2) ставим 270. Из запасов производителя А3 осталось 70, так как 420-80-270=70, ставим их в клетку (3,3). Потребность покупателей В1 и В2 в товарах исчерпаны, следовательно, оставшиеся 480 товаров производителя А2 ставим в клетку (2,3). При этом товар производителей полностью распределён.
Полученный начальный план проверим на оптимальность. План невырожденный, так как число занятых клеток (3+3-1=5) равно m + n – 1 (m и n – число строк и столбцов распределительной матрицы). Обозначим через и потенциалы строк и столбцов. Для их нахождения отметим, что в занятых клетках сумма потенциалов строки и столбца должна равняться тарифу клетки. Получаем в данном случае 5 уравнений с 6-ю неизвестными:
Другие рефераты на тему «Экономико-математическое моделирование»:
- Создание имитационной модели
- Использование методов линейного программирования и экономического моделирования в технологических процессах
- Задачи, пути и средства преодоления отставания и ускорения эффективного развития персонала в строительстве
- Практическое применение теории игр
- Прогнозирование и регулирование развития производственной инфраструктуры
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели