Применение методов линейного программирования для оптимизации стоимости перевозок
35 1,5
|
|
|
Стоимость 3-его плана:
D3=1•35+2•15+0,4•5+1•15+0,8•40+1•35+1,5•35+2,5•40=301,5.
Имеем:u1+v6-c16 =0,3>0,u3+v5-c35 =0,3>0. => По критерию оптимальности, третий план не оптимален. Далее max(0,3;0,3)=0,3. => Поместим перевозку в клетку А3В5, сместив 40=min(40,40) по циклу, указанному в таблице штрихом. Получим новую таблицу. Чтобы 4-ый план был невырожденным, оставим в клетке А4В5 нулевую перевозку. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u4+v5=2,5, u2+v3=1, u4+v4=1,5, u3+v5=1,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,5, u3=-1,u4=0, v3=1,6, v5=2,5, v6=0. Составим таблицу 3. :
Таблица 3. - Проведение итераций
Цеха Склад |
B1 (b1=40) v1=1 |
B2 (b2=50) v2=2 |
B3 (b3=15) v3=1,6 |
B4 (b4=75) v4=1,5 |
B5 (b5=40) v5=2,5 |
B6 (b6=5) v6=0 | ||||||||||||||||
U1=0 |
|
|
|
|
|
0 | ||||||||||||||||
U2=-0,6 |
|
|
|
|
|
0 | ||||||||||||||||
U3=-1 |
|