Применение методов линейного программирования для оптимизации стоимости перевозок

Сумма всех затрат, т. е. стоимость реализации данного плана перевозок, является линейной функцией переменных :

(3. )

Требуется в области допустимых решений системы уравнений (3. ) и (3.) найти решение, минимизирующее линейную функцию (3. ).

Таким образом, мы видим, что транспортная задача является задачей линейного программирования. Для ее решения применяют также симплекс-метод, но в силу специфики задачи здесь можно обойтись без симплекс-таблиц. Решение можно получить путем некоторых преобразований таблицы перевозок. Эти преобразования соответствуют переходу от одного плана перевозок к другому. Но, как и в общем случае, оптимальное решение ищется среди базисных решений. Следовательно, мы будем иметь дело только с базисными (или опорными) планами. Так как в данном случае ранг системы ограничений-уравнений равен то среди всех неизвестных выделяется базисных неизвестных, а остальные ·неизвестных являются свободными. В базисном решении свободные неизвестные равны нулю. Обычно эти нули в таблицу не вписывают, оставляя соответствующие клетки пустыми. Таким образом, в таблице перевозок, представляющей опорный план, мы имеем заполненных и ·пустых клеток.

На предприятии ОАО «Электросигнал» имеется 4 транзитных склада Аi, на которых хранятся сборочные узлы и 5 цехов Bj, занимающихся сборкой готовой продукции. Ниже, в таблице 3., приведены данные по количеству сборочных узлов на каждом складе, запросы цехов и стоимость перевозки одного агрегата из Аi в Bj. Необходимо составить такой план перевозок, при котором запросы цехов будут удовлетворены при минимальной суммарной стоимости перевозок.

Таблица 3. – Исходные данные по количеству сборочных узлов и стоимость перевозки

Цеха

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

А1 (а1=50)

1,0

2,0

3,0

2,5

3,5

А2(а2=20)

0,4

3,0

1,0

2,0

3,0

А3(а3=75)

0,7

1,0

1,0

0,8

1,5

А4(а4=80)

1,2

2,0

2,0

1,5

2,5

В данном случае Σai=225 >Σbj=220 => имеем дело с открытой моделью транспортной задачи. Сведем ее к закрытой введением фиктивного цеха B6 с потребностью b5=225-220=5 и стоимостью перевозок сi6=0.Имеем таблицу 3. :

Таблица 3. -

Цеха

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

B6

(b6=5)

А1 (а1=50)

1,0

2,0

3,0

2,5

3,5

0

А2(а2=20)

0,4

3,0

1,0

2,0

3,0

0

А3(а3=75)

0,7

1,0

1,0

0,8

1,5

0

А4(а4=80)

1,2

2,0

2,0

1,5

2,5

0

Математическая модель: обозначим xij – количество товара, перевозимого из Аi в Bj. Тогда

x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

X = x31 x32 x33 x34 x35 x36 - матрица перевозок.

x41 x42 x43 x44 x45 x46

min(x11+2x12+3x13+2,5x14+3,5x15+0,4x21+3x22+x23+2x24+3x25+0,7x31+x32+x33+0,8x34+1,5x35++1,2x41+2x42+2x43+1,5x44+2,5x45) (3. )

x11+x12+x13+x14+x15+x16=50

x21+x22+x23+x24+x25+x26=20

x31+x32+x33+x34+x35+x36=75

x41+x42+x43+x44+x45+x46=80

(3. )

x11+x21+x31+x41=40

x12+x22+x32+x42=50

x13+x23+x33+x43=15

x14+x24+x34+x44=75

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы