Комплексный анализ рыбной отрасли

Пусть Т - какая-то заданная технология. В общем случае она позволяет реа­лизовать некоторое множество М конкретных и различных ТП, как-то: (, ), (, ), . Все эти ТП, собранные в множество М, принято именовать технологи­ческим множеством (ТМ) производственного сектора экономики. Так что

Модель Гейла

Моделью Гейла называется ТМ, элементы которого удовлетво­ряют 4-м условиям, как то:

1. Если , то =0 . Это естественное свойство принято называть не­осуществимостью «рога изобилия».

2. М представляет собой выпуклый конус в .

3. Для каждого номера i=1,2, ., n, где n — количество компонент векторов и , существует ТП такой, что компонента вектора положительна. Другими словами, свойство 3 означает, что каждый из n про­дуктов может быть произведен, так что невоспроизводимые ресурсы продуктами в модели Гейла не являются.

4. Множество М замкнуто в . Это свойство, означающее, что множество М содержит все свои предельные точки, имеет сугубо математическую подоплеку, доставляющую удобство в аналитических исследованиях.

Пусть М — модель Гейла. В рамках модели М естественно задается динамика развития экономики. Пусть ; будем полагать, что вектор потребля­ется (в процессе производства) в текущий момент времени t, а вектор произ­водится в следующий момент (t+1). Тогда характеризует состояние экономики (в смысле запаса продуктов) в текущий момент t. Аналогично, вектор характеризует состояние экономики в следующий момент (t + 1), причем пара . Далее, вектор будет потребляться в мо­мент (t + 1), а в момент (t + 2) окажется произведенным вектор и т.д. Та­ким образом, осуществляется динамическое движение экономики

Это движение самоподдерживающееся, поскольку какой-либо приток извне, полагаем, отсутствует.

Последовательность называется допусти­мой траекторией в модели Гейла М на конечном интервале времени Т, если при t = 0, 1, 2, ., T-1 справедливо отношение . Если Т бесконечно, то тра­ектория допустима на бесконечном интервале времени. Не равная тождественно нулю допустимая траектория называется траекторией сба­лансированного роста, если при t = 0, 1, 2, . справедливо равенство

,

в котором λ - положительная константа, темп роста сбалансированной траекто­рии. Сбалансированная траектория называется магистралью, если ее темп роста λ максимален.

Как следует из данного определения, магистраль, если она существует, принадлежит при всех t = 0, 1,2, . лучу

.

Этот луч принято называть неймановским лучом.

Понятие темпа роста определено выражением применительно к сба­лансированным траекториям модели Гейла.

Рассмотрим сначала специальное подмножество МоМ тривиальных ТП мо­дели Гейла, то есть таких процессов , у которых . Можно пока­зать (см. задачу 18 в конце гл. 9), пользуясь определением модели Гейла, что подмножество Мо состоит из одного элемента (,). Его темп роста определяем следующим образом

λ(,) = 0.

Пусть теперь - любой нетривиальный ТП; его темп роста определяется так:

В правой части последнего равенства минимум берется по всем положитель­ным компонентам вектора .

Рассмотрим 2 последних выражения (9.6.16)-(9.6.17), задающих определение темпа роста любого ТП , или говоря иначе, определяющие на множестве М скалярную неотрицательную функцию . Каковы свойства этой функции? Отметим три из них.

1. Функция является положительно однородной функцией нулевой степени, то есть

,

при любом (> 0).

2. Значение функции удовлетворяет неравенству

3. В множестве М существует такой ТП , что

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы