Комплексный анализ рыбной отрасли

Из пары факторов х3 и х2 исключаем фактор х2, так как его связь с другими факторами более сильная, чем связь x3 с ними. Исключаем фактор x7, так как его связь с y очень незначительная. По такой схеме исключаем все другие факторы. Таким образом, для построения модели остаются факторы х1, х5, х8 и х10. Матрица коэффициентов парной корреляции для них выглядит следующим образом:

=0 cellspacing="0" cellpadding="0" align="center">

у

х1

х5

х8

х10

у

1

       

х1

-0,88300608

1

     

х5

0,45605173

-0,003474

1

   

х8

0,59499201

-0,342415

0,619844

1

 

х10

-0,635065

0,297207

-0,685489

-0,6729266

1

Для получения адекватной модели необходимо устранить мультиколлинеарность, т.е. вывести из рассмотрения факторы, которые имеют совокупное воздействие друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые из них всегда будут действовать в унисон. Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Чем ближе к нулю этот проеделитель, тем сильнее мультиколлинеарность факторов. Для наших парных коэффициентов корреляции между факторами матрица имеет вид:

Определитель матрицы парных коэффициентов корреляции между факторами равен 0,2, что достаточно близко к 0, следовательно, между оставшимися факторами наблюдается мультиколлинеарность.

Продолжим удаление факторов, являющихся самыми неинформативными, регулярно сопоставляя значения множественного коэффициента корреляции и детерминации (который оценивает качество построенной модели в целом) и проверяя значимость уравнения регрессии.

В следующих таблицах представлены результаты регрессионного анализа после исключения факторов х1, х5, х8, х10.

ВЫВОД ИТОГОВ

 
   

Регрессионная статистика

Множественный R

0,999530603

R-квадрат

0,999061427

Нормированный R-квадрат

0,995307133

Стандартная ошибка

29,05134237

Наблюдения

6

Дисперсионный анализ

         

df

SS

MS

F

Значимость F

Регрессия

4

898372,4

224593,0982

266,111717

0,045939839

Остаток

1

843,9805

843,9804935

   

Итого

5

899216,4

     

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

30538,08691

1623,46624

18,81042319

0,03381216

x1

-26,94728304

1,07745261

-25,01017937

0,02544087

x5

0,007316604

0,00087595

8,352752758

0,07585572

x8

-242,9957642

101,983594

-2,382694665

0,25297163

x10

-81,66075105

21,2523898

-3,842426757

0,16208611

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы