Комплексный анализ рыбной отрасли

По данным вычислениям уравнение регрессии будет иметь вид:

ŷ =30538,09-26,95*x1+0,007*x5-242.996*x8-81,66*x10.

б) Оценка практической значимости и надежности полученного уравнения.

Для оценки значимости параметров уравнения используется t- критерий Стьюдента. С помощью t-критерия Стьюдента для каждого из оставшихся факторов можно выяснить, формируется ли о

н под воздействием случайных величин (является ли фактор информативным).

Его можно определить как:

,

где - частный F- критерий Фишера, который определяется по формуле:

,

где - множественный коэффициент детерминации всего комплекса р факторов с результатом;

- тот же показатель детерминации, но без введения в модель фактора xi.

n- число наблюдений;

m- число параметров в модели (без свободного члена).

При этом определяются две гипотезы:

Н0 - коэффициент статистически незначим;

Н1 - коэффициент статистически значим.

Затем сравнивается факторное значение t- критерия, т.е. вычисленное, и табличное, определенное по специальной таблице t-критерия. Если факторное значение окажется больше табличного, то гипотеза Н0 отклоняется и коэффициент признается статистически значимым.

В полученном уравнении tтабл: n-m-1=7-4-1=2, tтабл =4,3

Следовательно коэффициенты при факторах х1, х5 являются статистически значимыми, для них значение t-критерия больше 4,3, следовательно, можно сделать вывод о существенности данных параметров, которые формируются под воздействием неслучайных причин, а коэффициенты при х8, х10, соответственно, незначимы.

P-значение характеризует вероятность случайного характера формирования параметра. Из рассчитанных значений видно, что наибольшей вероятностью случайной природы факторов обладают b8 , поэтому этот фактор можно исключить из уравнения регрессии. Также удаляем фактор b10 (так как он не является значимым).

Проведём анализ данных для оставшихся двух факторов:

ВЫВОД ИТОГОВ

   

Регрессионная статистика

Множественный R

0,99242

R-квадрат

0,984897

Нормированный R-квадрат

0,974828

Стандартная ошибка

67,28282

Наблюдения

6

Дисперсионный анализ

       

df

SS

MS

F

Значимость F

Регрессия

2

885635,4

442817,7

97,8175049

0,001856086

Остаток

3

13580,93

4526,978

   

Итого

5

899216,4

     

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

287,2650033

1821,254

14,04644

0,00078146

x1

2,866255447

2,231529

-12,4227

0,00112406

x5

-0,145583563

0,001402

6,384305

0,00778112

Проверим еще раз наличие мультиколлинеарности оставшихся факторов. Для парных коэффициентов корреляции между факторами х1, х5 матрица имеет вид:

Определитель матрицы парных коэффициентов корреляции между факторами приближенно равен 1 что говорит об отсутствии мультиколлинеарности между оставшимися факторами.

Теперь из модели исключены явно коррелированные факторы, следовательно, можно приступать к оценке модели множественной регрессии. Значимость и надежность всего уравнения в целом определяется с помощью

F- критерия Фишера:

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы