Некоторые аспекты моделирования конкурентного равновесия

4. Модель регулирования цен и устойчивость конкурентного равновесия

Доказав существование конкурентного равновесия в математической модели рынка, естественно задаться вопросом: как найти конкурентное равновесие и, прежде всего, равновесные цены? Поиск равновесия, в отличие от ранее рассмотренных вопросов, по существу, является динамическим (развернутым во времени) действием.

Проц

есс последовательного приближения к равновесной цене называется регулированием цен. Кто и с какой целью регулирует цены? Ответ заключается в том, что, благодаря законам спроса и предложения, в условиях конкуренции рынок сам приспосабливает цены к вариациям спроса и предложения во времени. В начале была обнаружена «геометрическая» картина такого приспособления. Здесь наша задача состоит в обнаружении аналитической формулы регулирования для численного вычисления равновесных цен.

Итеративный процесс поиска равновесных цен должен обладать свойством сходимости, т.е., в конечном счете, должен привести к искомым ценам с любой предзаданной точностью. В этом случае процесс регулирования цен (или собственно конкурентное равновесие) называется устойчивым.

Таким образом, задача регулирования цен преследует цель определения условий, заставляющих цены, как функций времени, сходиться к равновесным значениям. Математически эта задача сводится к нахождению условий устойчивости решений специально построенных рекуррентных по времени уравнений. Такое уравнение называется динамической моделью регулирования цен. Эта модель может быть как непрерывной, так и дискретной. В первом случае, на основе предположения о непрерывном изменении цен, модель выражается с помощью дифференциальных уравнений. Во втором случае предполагается дискретный характер изменения цен, т.е. фиксируется изменение цен в отдельные моменты времени (или через определенные промежутки времени). Поэтому модель регулирования цен имеет вид разностных уравнений. Непрерывные модели предпочтительны в теоретическом плане. Их преимущество состоит в возможности применения удобного аппарата дифференцирования. Будем рассматривать только дискретный случай, наиболее понятный с точки зрения практического восприятия.

Перейдем к конкретным построениям. Для определенности процесс регулирования рассмотрим в модели Эрроу-Дебре. Предварительно уточним некоторые предпосылки и ряд дополнительных сведений.

Во-первых, цены будем снабжать параметром времени t: – цена k‑го товара в момент t.

Во-вторых, будем предполагать дискретное изменение времени, т.е. будем рассматривать отдельные моменты времени t1, t2,… Причем для упрощения формул будем считать, что . Это дает возможность вместо последовательности рассматривать последовательность моментов t, t+1,…, начиная с t = 0.

В-третьих, вместо пространства товаров будем рассматривать пространство , где дополнительная n+1‑ая координата соответствует особому виду товара – «деньгам». Таким образом, размерность всех векторов спроса и предложения будет равна n+1. Вектор цен, соответственно, будет задан в пространстве . Причем дополнительная n+1 – ая компонента p0 будет интерпретироваться как «цена денег».

Для некоторого вектора цен и соответствующих ему векторов совокупного спроса и совокупного предложения обозначим

(4.1)

Величина F(p) имеет смысл избыточного спроса при ценах p (противоположная величина имеет смысл избыточного предложения). Рассматривая эту величину для всех , можно говорить о функции избыточного спроса F, определенной на множестве P.

Для равновесного вектора цен имеем (см. (2.7), (2.8))

(4.2)

(4.3)

Если предположить все цены строго положительными, т.е. , k=0,1,…, n, то равенство (4.3) будет иметь место только в случае строгого равенства в (4.2), т.е.

(4.4)

Так как это равенство понимается покомпонентно (, k=1,…, n, где – функция избыточного спроса для товара k), то условие (4.3) становится следствием равенства (4.4). Поэтому в случае положительных цен конкурентное равновесие определяется одним условием (4.4).

Функция F обычно предполагается положительно однородной нулевой степени, т.е. для любых и постоянного числа . Это свойство означает, что на функцию избыточного спроса изменение масштаба цен не влияет, а существенны лишь относительные цены.

Рассмотрение функции избыточного спроса связано с ее применением в модели регулирования цен. В основе построения искомой формулы итеративного процесса вычисления равновесных цен лежит идея о том, что скорость изменения цен пропорциональна изменению величины избыточного спроса. Действительно, возрастание (убывание) функции избыточного спроса во времени равносильно более быстрому (медленному) росту спроса по сравнению с предложением (см. (4.1)), а это, согласно закона спроса, сопровождается увеличением (уменьшением) цен товаров. Сказанное математически можно отразить формулой

или в координатной форме

, k=0,1,…, n

где – коэффициент пропорциональности, – функция избыточного спроса для товара k. Здесь предположим, ради простоты, что пропорциональность изменения цены и избыточного спроса по всем товарам одинакова (и равна числу ).

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы