Некоторые аспекты моделирования конкурентного равновесия

Теперь перейдем к основному вопросу.

Теорема 3.1. В модели Эрроу-Дебре существует конкурентное равновесие.

Доказательство. Обозначим для каждого

(3.5)

Как следует из условий У‑1 и У‑5, множество есть непустое, компактное и выпуклое множество. Обозначим через отображение . Из непрерывности (линейности) функций , j=1,…, m, и из леммы 3.1. следует, что есть ограниченное, полунепрерывное сверху отображение.

Исходя из того, что , j=1,…, m, задача (3.2) должна решаться при ограничении

(3.6)

где – оптимальное решение задачи (3.1). Известно, что для оптимального решения задачи (3.2) в (3.6) должно иметь место строгое равенство:

(3.7)

Если это не так, то в силу условия У‑5 существует , для которого , а по условию У‑4 можно найти такое , где , что , причем все еще удовлетворяет ограничениям (3.6). Но это противоречит определению как точки максимума. Таким образом, равенство (3.7) действительно имеет место.

Так как по условию У‑1 , то по определению максимума . Отсюда и из условий У‑1 – У‑6 следует, что множество оптимальных решений задачи (3.2) при ограничениях (3.6) есть непустой выпуклый компакт. Поэтому множество также будет непустым выпуклым компактом. Из условий У‑4 – У‑6 и леммы 3.1 следует, что есть полунепрерывное сверху множественнозначное отображение.

Построим отображение S для любого следующим образом:

(3.8)

где

, ,

Как и выше, можно показать, что S есть ограниченное, полунепрерывное сверху множественнозначное отображение из P в и что множество S(p) непусто, выпукло и замкнуто. Суммируя обе стороны равенства (3.7) по i=1,…, l, получаем

или

В обозначениях элементов множества S(p) это равенство записывается как

, (3.9)

Видно, что отображение S, порождающее для каждого множество (3.8), удовлетворяет всем условиям леммы Гейла. Из этой леммы следует существование таких и , что . Поэтому набор векторов , где , образует конкурентное равновесие в модели Эрроу-Дебре. Действительно, условие (2.6) выполнено по построению векторов и ; условие (2.7) следует из неравенства ; условие (2.8) вытекает из (3.9) и, наконец, отображения D и S являются функциями совокупных спроса и предложения в модели Эрроу-Дебре, так как они определены посредством соотношений (3.3) и (3.4) Теорема доказана.

В связи с тем, что наиболее жестким из всех условий, определяющих модель Эрроу-Дебре, является У‑6, обсудим одну возможность его ослабления.

Это условие в теореме 3.2 вместе с У‑3, У‑4 и леммой 3.1 обеспечивает непустоту бюджетных множеств потребителей и полунепрерывность сверху функций их спроса . Эти свойства не изменятся, если У‑6 заменить следующими условиями: для любого вектора , и , . Так как второе из условий не является жестким, то существование конкурентного равновесия, помимо условий У‑1 – У‑5, зависит от наличия положительного дохода у всех потребителей. Очевидно, что это условие слабее, чем У‑6, так как положительный доход у потребителя может существовать и при отсутствии начального запаса товаров (за счет участия в прибыли производственного сектора). Последнее условие выполняется, если хотя бы одно производственное предприятие рентабельно и все потребители участвуют в прибыли производственного сектора (как минимум, не являются безработными). Это условие представляется не столь жестким и, следовательно, существование экономического равновесия – реальным. Однако не следует забывать, что речь идет о моделях рынка, предполагающих выполнение не совсем реальных условий совершенной конкуренции.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы