Методика теплового расчета двигателя внутреннего сгорания
2. избыточный воздух.
В дизельном двигателе объемная доля продуктов сгорания:
(4.9)
Объемная доля избыточного воздуха:
(4.10)
В расчетах целесообразно воспользоваться проверочным соотношением: r0 + rb = 10,6394+0,360 =1
3. Расчет параметров наддува
Многие современные бензиновые двигатели и большинство дизельных снабжены системами газотурбинного наддува, что позволяет значительно повысить мощность при практически тех же габаритах и одновременно снизить удельный расход топлива. Компрессор, установленный в системе газотурбинного наддува, должен создавать большее давление, чем давление наддува Рк, так как часть его тратится не сопротивление воздушного тракта между компрессором и двигателем.
Основным элементом, создающим сопротивление, является охладитель наддувочного воздуха. Последний конструируют так, чтобы он существенно снижал температуру воздуха, но мало влиял на давление. На основании статистических данных потери давления в охладителе составляют:
Следовательно, давление за компрессором:
(МПа) (5.1)
Степень повышения давления в компрессоре:
(5.2)
где Р0 - атмосферное давление.
Пpи сжатии воздуха в компрессоре происходит повышение его температуры, которая определяется по формуле:
(5.3)
гдеТ0 - температура атмосферного воздуха;
К = 1,40 - показатель адиабаты для воздуха;
ηкад = 0,68 - 0,76 - адиабатный к. п. д. компрессора.
Повышение температуры составит:
(К)
Температура воздуха на входе в двигатель:
(5.4)
где σ = 0,5 - 0,8 - степень тепловой эффективности охладителя.
Теоретически, если σ = 0, то , что означает отсутствие охлаждения.
Если σ = 1, то , что соответствует полному охлаждению воздуха до температуры окружающей среды. С термодинамической точки зрения величину σ целесообразно увеличивать, однако при этом растут габариты и масса охладителя. Практикой выработаны рекомендации для целесообразного выбора значения степени тепловой эффективности охладителя в диапазоне, указанном выше.
Температура воздуха на входе в двигатель составит:
(К)
4. Расчет процесса впуска
Процесс впуска представляет собой сложный термодинамический процесс в открытой термодинамической системе, который сопровождается изменением объёма цилиндра, проходного сечения впускных клапанов, сопротивления на впуске. В этом процессе протекают все диссипативные явления, вызванные трением, теплообменом и диффузией. Точный расчёт процесса впуска возможен лишь на основе численного решения системы дифференциальных уравнений, что выходит за рамки настоящей курсовой работы.
В курсовой работе ограничимся определением параметров рабочего тела в конце процесса впуска, используя многочисленные экспериментальные данные, полученные при исследовании двигателей подобных типов.
За начало цикла примем, точку "r", которая соответствует концу процесса выпуска или началу впуска, а поршень находится в ВМТ. Количество рабочего тела в цилиндре в этом случае минимально, поэтому погрешности в оценке параметров рабочего тела сравнительно мало влияют на общий результат расчёта.
На основании статистических опытных данных принимаем параметры рабочего тела в точке "r" для бензиновых двигателей с наддувом:
(МПа) ;
Давление в цилиндре в конце впуска отличается от давления наддува Рк в меньшую сторону за счёт потерь давления при впуске (главным образом в клапанных устройствах):
(6.1)
где = (0,05-0,15). Рк - потеря давления при впуске.
Давление в цилиндре в конце впуска составит:
(МПа)
Температуру в цилиндре в конце впуска определяют по формуле, полученной на основе баланса энергии при впуске:
(5.2)
где - повышение температуры свежего заряда при впуске за счёт подогрева от стенок (для дизельных двигателей = 20 - 40 К);
γ - коэффициент остаточных газов (для дизельных двигателей γ = 0-0,05);
Температуру в цилиндре в конце впуска определяем по формуле (5.2):
(К)
Величины Тr и γ, принятые при расчете процесса впуска, в дальнейшем могут быть проверены и при необходимости уточнены.
Важнейшей характеристикой процесса впуска является коэффициент наполнения ηv, который равен отношению количества свежего заряда, действительно поступившего в цилиндр, к теоретическому количеству свежего заряда, который помещается в рабочем объеме цилиндра при параметрах на впуске (Pk,Tk).
Для расчета коэффициента наполнения служит формула:
(5.3)
Коэффициент наполнения влияет на количество свежего заряда в цилиндре и, следовательно на мощность. Поэтому всемерно стремятся к увеличению коэффициента наполнения, снижая потери при впуске () и осуществляя продувку камеры сгорания в период газообмена.
5. Расчёт процесса сжатия
В процессе сжатия происходит уменьшение объема, поэтому давление и температура тела в цилиндре возрастают. На процесс сжатия сильное влияние оказывает теплообмен со стенками, а также трение и диффузия при движении и перемешивании рабочего тела. Теплообмен со стенками приводит к подводу теплоты к рабочему телу, когда его температура низка. В конце процесса сжатия температура рабочего тела превосходит температуру стенок и направление теплового потока меняется - он направлен от рабочего тела к стенкам, то есть происходит теплоотвод. Поэтому процесс сжатия является сложно-политропным с переменным показателем политропного процесса.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск