Элективный курс по математике для классов спортивно-оборонного профиля

На языке математической статистики эта задача формулируется следующим образом. Прирост результатов для испытуемых первой группы рассматривается как случайная выборка из генеральной совокупности с параметрами и . Аналогично для второй группы существует генеральная сов

окупность с параметрами и . Требуется проверить нулевую гипотезу о том, что =. В математической статистике доказывается, что

,

где .

Если величина t окажется слишком большой, то нулевая гипотеза должна быть отвергнута, как малоправдоподобная. В этом случае надо взять альтернативную гипотезу Н1:

Составим порядок применения t-критерия для проверки гипотезы о разности между двумя генеральными средними:

Проверить гипотезу о нормальности распределения наблюдений в каждой группе.

Рассчитать для каждой группы

Проверить гипотезу .

Рассчитать стандартную ошибку разности между средними арифметическими.

Рассчитать величину критерия t. Сравнить полученное значение с граничным при выбранном уровне значимости и степеней свободы.

если нулевая гипотеза отвергнута, то построить доверительный интервал для разности между генеральными средними.

Пример. Применим t-критерий для проверки гипотезы H0: =, к данным примера приведенного в начале параграфа.

проверить гипотезу о нормальности распределения можно позже, когда будут описаны соответствующие критерии.

. Граничное значение при 5 процентном уровне значимости и числе степеней свободы для большей дисперсии f1=9 и меньшей f2=9 равно 4,03. Так как полученное значение критерия меньше граничного, то нулевая гипотеза не отвергается, то есть выборки взяты из генеральных совокупностей с равными дисперсиями.

Так как число наблюдений в группах равное, то стандартная ошибка разности равна:

Число степеней свободы в данном примере f=10+10-2=18. Граничное значение при 5-процентном уровне значимости и 18 степенях свободы равно 2,01. Так как полученное значение критерия t меньше граничного, гипотеза о равенстве генеральных средних не отвергается. Таким образом не смотря на то, что средний результат средних приростов в двух группах различный, нет оснований говорить, что один из методов лучше, чем другой. Полученное различие может быть объяснено случайностью.

Посторенние линии регрессии для корреляции

Во многих задачах требуется установить и оценить зависимость изучаемой случайной величины У от одной или нескольких других величин. Так например может интересовать зависимость между спортивным результатом конькобежца и его аэробными возможностями, зависимость между силой мышц и скоростью их сокращения.

В некоторых случаях можно установить функциональную зависимость. При исследованиях в области спорта чаще всего приходится сталкиваться с корреляционной зависимостью, при которой каждому значению зависимой переменной соответствует ряд распределения зависимой переменной, и с изменением первой положение этих рядов закономерно изменяется.

Корреляционные зависимости могут быть представлены, как и в табличной форме так и в виде графической зависимости. Для этого каждой клетке корреляционной таблицы нужно равномерно распределить соответствующие указанной цифре число точек. Для построения первичного поля корреляции в обычной системе координат наносятся точки с координатами (Х;У) в соответствии с исходными данными.

В исследовательской работе корреляционные величины встречаются очень часто. Обычно величина У зависит от большого количества аргументов: Х1; Х2; …; Хm. В случае линейной функции эту зависимотсть можно записать в виде:

У=а+b1X1+b2X2+…+bmXm.

Например, результат конькобежца определяется не только аэробными возможностями организма, но также силой и скоростью сокращения мышц, техникой бега, волевыми качествами и т.д. Если анализировать все аргументы, то получится функциональная зависимость.

При изучении корреляционных зависимостей между двумя признаками обычно решаются следующие задачи:

Установление формы связи между функцией У и аргументом Х, то есть описание закона изменения величины условных средних в связи с изменением Х. Эта задача решается путем нахождения уравнения регрессии.

Оценка тесноты связи между У и Х. Решение этой задачи требует ответов на два вопроса:

Есть ли вообще между Х и У корреляционная зависимость, т.е. наблюдается ли закономерное изменение условных средних в связи с изменением Х?

Если корреляционная зависимость существует, то в какой степени она отличается от функциональной?

Для решения данной задачи могут использоваться различные модели. Наиболее часто используется регрессионная и корреляционная модель.

Регрессионная модель предполагает, что зависимая переменная У является случайной величиной, а значения независимой переменной задаются экспериментатором произвольно. Например, исследуя зависимость скорости мышечного сокращения от величины поднимаемого груза, можно наметить, какие грузы должен поднимать испытуемый.

Корреляционная модель предполагает, что обе переменные – случайные величины.

Простейшей формой связи между двумя переменными является линейная зависимость вида У=а+bX. Параметр а носит название начальной ординаты. Параметр b носит название коэффициента регрессии, он характеризует наклон прямой линии.

Расчет параметров уравнения регрессии производится по методу наименьших квадратов:

.

Для выполнения этого учловия параметры находят из решения системы уравнений:

Которое можно представить в виде готовых формул:

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы