Элективный курс по математике для классов спортивно-оборонного профиля

1.9

В лотерее 100 билетов, среди них один выигрыш во 100 р, 3 выигрыша по 50 р, 6 выигрышей по 20 р и 15 по 3 р. Найти вероятность какого-нибудь выигрыша при покупке трех билетов. Что вероятнее: выиграть не менее 50 р или не более 50 р при покупке одного лотерейного билета?

1.10

Даны вероятности p=P(f), q=P(B), r=P(AB)

. Найдите вероятность следующих событий: P(AB), P(ĀB).

1.11

Брошены 6 игральных костей. Найдите вероятности следующих событий: а) на всех выпавших гранях появится одинаковое число очков; б) ровно на трех гранях появится 6 очков; в) хотябы на трех гранях появится не менее трех очков.

1.12

Какое наименьшее число костей надо бросить, чтобы наивероятнейшее число выпадений шестерки было равно 5?

1.13

Вероятность безотказной работы прибора равна 0.7. Для повышения надежности этот прибор дублируется несколькими такими же приборами (если один откажет, то начинает работать другой). Сколько дополнительно приборов надо взять, чтобы повысить надежность работы до 0.99?

1.14

Два равносильных игрока играют в шахматы. Ничьи во внимание не принимаются. Что вероятнее: а) выиграть три партии из четырех или четыре партии из шести; б) выиграть не менее трех партий из четырех или не менее четырех партий из шести?

1.15

В связи с распадом футбольной команды из 30 человек, руководством было принято решение 15 человек отправить играть в московскую команду, 8 человек в Пермскую команду и 7 человек в Киров. Места распределялись случайным образом. Какова вероятность того, что два друг попадут в один город.

1.16

Для победы игроку необходимо забросить один мяч в кольцо. Найти вероятность того, что команда выиграет, если можно кинуть мяч всего четыре раза, вероятности попадания которых равны 0,3; 0,4; 0,6; 0,7. Условная вероятность

Определение. Условной вероятностью события А, при условии, что произошло событие В, называется отношение вероятностей P(АВ) к Р(В) и обозначается Р(А/В):

.

Условная вероятность обладает следующими свойствами:

если то Р(А/В)=1

если Ø, то Р((А+В)/С)=Р(А/С)+Р(В/С)

Формула полной вероятности

Определение. Пусть задано некоторое вероятностное пространство (Ω, F, P). Тогда совокупность событий А1, А2, …, Аn называется полной группой событий, если выполняются следующие условия:

а) А1А2…,Аn=Ω;

б) Аi Aj=Ø, ;

г) Р(Ак)>0.

Пусть дано событие А, оно может наступить при появлении одного из несовместных Событий В1, В2,…, Вn, которые образуют полную группу. Нам также известны вероятности , , …, . Как можно найти вероятность события А? Ответ на этот вопрос дает теорема:

Теорема. Вероятность события А, которое может наступить лишь при условии появлении одного из несовместных событий В1, В2,…, Вn, образующих полную группу, равна сумме произведений вероятности каждого из этих событий на собственную условную вероятность:

P(А)=.

Эту формулу также называют формулой полной вероятности.

Формула Бейеса

Составим задачу: Пусть дано событие А, оно может наступить при появлении одного из несовместных Событий В1, В2,…, Вn, которые образуют полную группу. Так как нам заранее не известно, какое событие наступит, их называют гипотезами. Допустим, что произведено испытание в результате, которого появилось событие А. Поставим своей задачей определить как изменились вероятности гипотез, в связи с тем что событие А уже наступило. Другими словами определим следующие условные вероятности:

, , …, .

Определить данные вероятности можно при помощи формулы Бейеса:

,

Заменив P(А)=получим:

.

Решение задач.

Задача 1. Бросается игральный кубик. Какова вероятность того, что выпало число очков, больше трех (событие А), если известно, что выпала четная грань (событие В)?

Решение. Событию В соответствует выпадение чисел 2,4,6. Событию А выпадение чисел 4, 5, 6. Событию АВ – 4, 6. Поэтому используя формулу условной вероятности получи:

.

Задача 2. Для контроля продукции лыжной фабрики из трех партий лыж взята на проверку одна деталь. Какова вероятность выявления бракованной продукции, если в одной партии 2/3 лыж бракованные, а в двух других все доброкачественные?

Решение. Пусть событие В= «Взятая деталь бракованная», Ак= «деталь берется из к-ой партии», тогда вероятность Р(Ак)=1/3, где к=1; 2; 3.

Пусть в первой партии находятся бракованные лыжи, значит , тогда в двух других парий нет бракованных лыж, то есть: . Применяя формулу полной вероятности получим:

P(B)=.

Задача 3. Прибор состоит из двух узлов; работа каждого узла необходима для работы прибора в целом. Надежность (вероятность безотказной работы) в течении времени t первого узла равна p1, второго р2. Прибор испытывался в течении времени t, в результате чего обнаружено, что он отказал. Найдите вероятность того, что отказал первый узел, а второй исправен.

Решение. Пусть событие В= «прибор отказал», событие А1= «Оба узла исправны», А2= «первый узел отказал, а второй испарвен», А3= «первый узел исправен, а второй узел отказал», А4= «Оба узла отказали». Эти события образуют полную группу событий. Найдем их вероятности:

Р(А1)=р1р2

Р(А2)=(1-р1)р2

Р(А3)=р1(1-р2)

Р(А4)=(1-р1)(1-р2).

Так как наблюдалось событие В, то:

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы